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Economics and Machine Learning

• Economics shares with AI and machine learning (ML) the languages of
• optimization, and

• probability.

• But these fields also emphasize a number of distinct ideas.

• These distinct ideas matter, especially when we consider
1. The use of AI for public good

(as opposed to profit maximization).

2. The ethics and social impact of AI.
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Ideas from econ that matter for ML

1. Multiple agents
• with unequal endowments,

• conflicting interests, and

• private information.

2. Welfare as utility

3. Aggregation via social welfare functions and welfare weights

4. Causal inference
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Why these ideas from econ matter (1)
• ML tends to view everything as an optimization problem.

• Any potential issues are then understood as failures to optimize.

• Econ by contrast emphasizes
1. Conflicts of interest and distributional impacts.
2. Agency issues and asymmetric information.
3. Externalities.

Examples from AI ethics:

1. Algorithmic bias and fairness.
• Bias as a deviation from profit maximizaton?
• Versus: The causal impact of automated decisions on the distribution of welfare.

2. Alignment and AI safety.
• Value alignment as correctly specified reward function?
• Versus: Conflict over the choice of objectives.
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Why these ideas from econ matter (2)
• ML tends to consider observable rewards or losses.

• Normative economics emphasizes welfare as utility:
What people would choose.

• Utility is not directly observable.

Examples from AI for public good:

1. Labor market interventions.
• Maximize employment probabilities?

Could be achieved via forced labor.
• Versus: Maximize worker welfare by increasing their choice-sets.

2. Fertility and health in low income countries.
• Minimize the number of births?

Could be achieved via forced sterilizations.
• Versus: Maximizing women’s autonomy in fertility and health decisions.
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Papers that I will discuss

Cesa-Bianchi, N., Colomboni, R, and Kasy, M. (2023).

Adaptive maximization of social welfare

Kasy, M. (2023).

The political economy of AI:
Towards democratic control of the means of prediction

Kasy, M., and Abebe, R. (2021).

Fairness, equality, and power in algorithmic decision making

Kasy, M. (2023).

Algorithmic bias and racial inequality: A critical review
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AI is automated decisionmaking

• AI systems maximize measurable objectives:

Russell and Norvig (2016), chapter 2:
For each possible percept sequence, a rational agent should select an action
that is expected to maximize its performance measure, given the evidence
provided by the percept sequence and whatever built-in knowledge the agent
has.

• Leading approach: Machine learning (ML):
1. Supervised learning.

2. Targeted treatment assignment.

3. Multi-armed bandits.

4. Reinforcement learning.
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Machine learning objectives
1. Supervised learning:

• Predict outcomes Y given features X.

• Prediction g(X), prediction loss l(g(X),Y).

2. Targeted treatment assignment:
• Assign a treatment W based on features X

to maximize average outcomes Y among the treated.

• Assignment function h(X), reward h(X) · Y.

3. Multi-armed bandits:
• Maximize average outcomes over time. Cumulative reward

∑T
t=1 Yt.

• Tradeoff between exploration and exploitation

4. Reinforcement learning:
• Expected cumulative reward Q(Xt,Wt) = E[Yt + Q(Xt+1,Wt+1)|Xt,Wt].

• Actions impact current reward and future state.
7 / 26



Adversarial bandits
• Canonical bandit problems:

• Assign treatment sequentially.

• Observe previous outcomes before the next assignment.

• Regret:
How much worse is an algorithm

than the best alternative in a given comparison set (e.g., fixed treatments).

• Two approaches for analyzing bandits:
1. Stochastic: Potential outcomes are i.i.d. draws from some distribution.

2. Adversarial: Potential outcomes are an arbitrary sequence.

• Adversarial regret guarantees:
• Bound regret for arbitrary sequences.

• We can do that because the stable comparison set
substitutes for the stable data generating process.
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Social welfare
Common presumption for many theories of justice:

• Normative statements about society
are based on statements about individual welfare.

• Formally:
• Individuals i = 1, . . . , n.

• Individual i’s welfare vi.

• Social welfare is a function of individuals’ welfare

F(v1, . . . , vn).

• This raises many questions:
• Who is to be included among i = 1, . . . , n?

• How to measure individual welfare vi?

• How to aggregate to social welfare?
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Individual welfare as utility

• Dominant in economics

• Formally:
• Choice set Ci.

• Utility function ui(x), for x ∈ Ci.

• Realized welfare
vi = max

x∈Ci
ui(x).

• Double role of utility
• Positive: Individuals choose utility-maximizing x.

• Normative: Welfare is realized utility.
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Optimal taxation
• Social welfare = weighted sum of individual utilities.

• Welfare weights:
Relative value of a marginal lump-sum $ across individuals.

≈ Distributional preferences (rich vs. poor, healthy vs. sick,...).

• Envelope theorem:
• Behavioral responses to marginal tax changes don’t affect individual utilities.

• They only impact public revenue (absent externalities).

⇒ Impact on revenue is a sufficient statistic.

• Absent income effects:
Consumer surplus

= Equivalent variation

= integrated response function.
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Causal inference
• Counterfactuals described by potential outcomes or structural functions:

Yd = y(d, ϵ).

• Automated decisionmaking requires to learn the causal effect
of algorithmic decisions.

• Conditional exogeneity is immediate.

• Thus causal inference is trivial.

• It is usually not even recognized as such in ML.

• But:
• Discussions of fairness typically focus on inequality in treatment.

• This is distinct from the impact on inequality in downstream welfare.

• The distinction matters in the presence of pre-existing inequalities.
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Adaptive maximization of social welfare

How should a policymaker act,

• who aims to maximize social welfare,
Weighted sum of utility.

⇒ Tradeoff redistribution vs. cost of behavioral responses.

• and needs to learn agent responses to policy choices?
Adaptively updated policy choices.

⇒ Tradeoff exploration vs. exploitation.

Cesa-Bianchi, N., Colomboni, R, and Kasy, M. (2023).

Adaptive maximization of social welfare
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Setup: Tax on a binary choice

Each time period i = 1,2, . . . ,T:
• Policymaker (algorithm):

• Chooses tax rate xi ∈ [0, 1].

• Agent i:
• Willingness to pay: vi ∈ [0, 1].

• Response function: Gi(x) = 1(x ≤ vi).

• Binary agent decision: yi = Gi(xi).

• Observability:
• After period i, we observe yi.

• We do not observe welfare Ui(xi).
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Social welfare and cumulative regret
• Social welfare: Weighted sum of public revenue and private welfare:

Ui(x) = x · 1(x ≤ vi)︸ ︷︷ ︸
Public revenue

+ λ ·max(vi − x,0)︸ ︷︷ ︸
Private welfare

= x · Gi(x) + λ ·
∫ 1

x
Gi(x′)dx′.

• Cumulative welfare for a constant policy x / actual policy choices xi:

UT(x) =
∑
i≤T

Ui(x), UT =
∑
i≤T

Ui(xi).

• Adversarial regret:

RT({vi}Ti=1) = sup
x

E
[
UT(x)− UT

∣∣∣{vi}Ti=1

]
.
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The structure of observability

Choice xi reveals Gi(xi). But

Ui(x)− Ui(x′) =
[
x · Gi(x)− x′ · Gi(x′)

]
+ λ

∫ x′

x
Gi(x′′)dx′′

depends on values of Gi(x′′) for x′′ ∈ [x, x′]!

Different from standard adaptive decision-making problems:
• Multi-armed bandits:

Observe welfare for the choice made.

• Online learning:
Observe welfare for all possible choices.
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Lower and upper bounds on regret

Theorem
• There exists a constant C > 0 such that for any algorithm:s

there exists a sequence (v1, . . . , vT) for which

RT({vi}Ti=1) ≥ C · T2/3.

• Consider the algorithm “Tempered Exp3 for social welfare.”
There exists a constant C′ such that for any sequence (v1, . . . , vT),

RT({vi}Ti=1) ≤ C′ · log(T)1/3 · T2/3.

Compare to the lower bound for stochastic / adversarial bandits: C · T1/2.
Monopoly pricing, and reserve price setting for auctions, are bandit problems!
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Construction for the proof of the lower bound
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The ethics and social impact of AI
• Concerns about the impact of AI:

1. Fairness, discrimination, and inequality.

2. Privacy, data property rights, and data governance.

3. Value alignment and the impending robot apocalypse.

4. Explainability and accountability.

5. Automation and wage inequality.

• Corresponding efforts to regulate AI.

• How can we think systematically about these questions?

Kasy, M. (2023).

The political economy of AI:
Towards democratic control of the means of prediction.
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Key arguments

1. AI systems maximize a single, measurable objective.

2. In society, different individuals have different objectives.
AI systems generate winners and losers.

3. Society-level assessments of AI
require trading off individual gains and losses.

4. AI requires democratic control
of algorithms, data, and computational infrastructure,
to align algorithm objectives and social welfare.
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2. Privacy, data property rights, and data governance

Standard view:
(Dwork and Roth, 2014)

• Differential privacy.
• It should make (almost) no

observable difference whether your
data are in a dataset.

• No matter what other information
is available to a decisionmaker.

• Machine learning performance is
unaffected by differential privacy.

• Related:
Individual property rights over data.

Alternate view:
(Viljoen, 2021)

• Primary use of data in ML is to learn
relationships, not individual data.
⇒ Informational externalities.
(Acemoglu et al., 2022)

• Privacy / property rights cannot
prevent harms from AI.

⇒ Only democratic governance can
address harms, not individual
property rights.
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3. Value alignment and conflicts of interest

Standard view: (Russell, 2019):
• Value alignment is a gap between

human and machine objectives.

• Possible solutions:
1. More careful engineering of

objective functions.

2. Infer objectives from observed
human behavior (“inverse
reinforcement learning”).

Alternate view:
• Value alignment is a gap between the

objectives of those controlling the
algorithm and the rest of society.

• Additionally:
Not everything is observable,
imposing fundamental limits on
optimization.

• Possible solutions:
1. Democratic control to align

algorithm objectives with society.

2. Refrain from deploying AI in some
consequential settings.
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1. Algorithmic bias and racial inequality
Standard view:
(Pessach and Shmueli, 2020)

• Fairness ≈ treating people of the
same “merit” independently of their
group membership.

• If an algorithm is maximizing firm
profits then its decisions are fair by
assumption.

• No matter how unequal the resulting
outcomes within and across groups.

• Only deviations from
profit-maximization are “unfair.”

Alternate view:
(Kasy and Abebe, 2021; Kasy, 2023)

• Welfare / equality ≈ (counterfactual /
causal) consequences of an
algorithm for the distribution of
welfare of different people.

• Fairness vs. equality:
1. Improved prediction ⇒ Treatments

more aligned with “merit.”
Good for fairness, bad for equality.

2. Affirmative action / redistribution:
Bad for fairness, good for equality.
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“Algorithmic bias” as deviation from profit maximization
• Job candidates get wage w (known),

their marginal contribution to profits would be M (unknown).

• Employer / algorithm makes hiring decisions D
based on covariates X (known).

d(X) = P(D = 1|X).

• X can be used to predict M, m(X) = E[M|X].

• A test for deviation from profit maximization: Suppose

m(x) > m(x′), d(x) < 1, and d(x′) > 0.

Then profits could be increased by hiring more candidates with features x
and fewer candidates with features x′.

• Most fairness definitions are based on variants of this condition.
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The causal impact of an algorithm on the distribution of welfare

• Outcomes are determined by the potential outcome equation

Y = W · Y1 + (1−W) · Y0.

• The realized outcome distribution is given by

pY,X(y, x) =
[
pY0|X(y, x) + w(x) ·

(
pY1|X(y, x)− pY0|X(y, x)

)]
· pX(x).

• What is the impact of w(·) on a statistic ν?

ν = ν(pY,X).

Examples: Variance, quantiles, between group inequality, social welfare.
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Conclusion
• Ideas from Econ that matter for ML:

1. Multiple agents with conflicting interests and private information.

2. Welfare as utility.

3. Aggregation via social welfare functions and welfare weights.

• Especially relevant for:
AI for public good, Ethics and social impact of AI.

• Versus the big commercial applications of AI:
Maximizing ad clicks, monopoly price setting.

• Ideas from ML that matter for econ:
1. Variance/bias tradeoffs, data-dependent tuning.

2. Sequential decisionmaking and exploration/exploitation tradeoffs.

3. High-dimensional, non-traditional data formats.
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Thank you!


