Advances in Collaborative Neurodynamic Optimization

Jun Wang

Department of Computer Science & School of Data Science City University of Hong Kong Kowloon Tong, Kowloon, Hong Kong jwang.cs@cityu.edu.hk

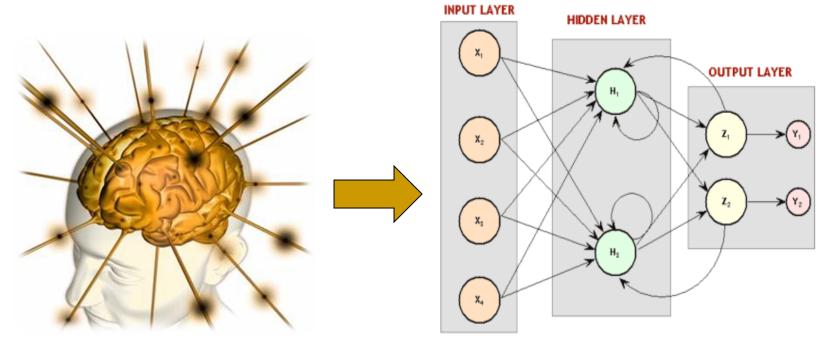
TU-Wien, Vienna, Austria; June 10, 2024

Optimization

- Optimization is omnipresent in nature and society.
- Optimization is an important tool for problemsolving.
- Optimization problems arise in numerous applications such as data processing, machine learning, robotics and control, etc.

Neurodynamic Optimization

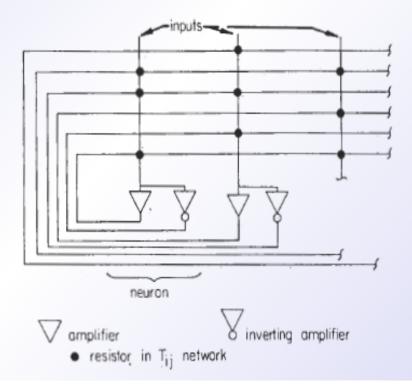
As brain-like nonlinear dynamic systems, recurrent neural networks can serve as parallel computational models for optimization (aka. neurodynamic optimization).



Pioneering Works

- J. J. Hopfield and D. W. Tank, *Biological Cybernetics*, vol. 52, pp. 141–152, 1985.
- J. J. Hopfield and D. W. Tank, *Science*, vol. 233. no. 4764, pp. 625–633,1986.
- D.W. Tank and J. J. Hopfield, *IEEE Trans. Circuits and Systems*, vol. 33, pp. 533– 541, 1986.

$$\begin{split} C_i \frac{du_i}{dt} &= -\frac{u_i}{R_i} + \sum_j W_{ij} v_j + I_i \\ v_i &= g_i(u_i) \end{split}$$



Problem Formulation

Consider the following constrained optimization problem:

- min f(x)
 - s.t. $g(x) \le 0$ h(x) = 0l < x < u(1)

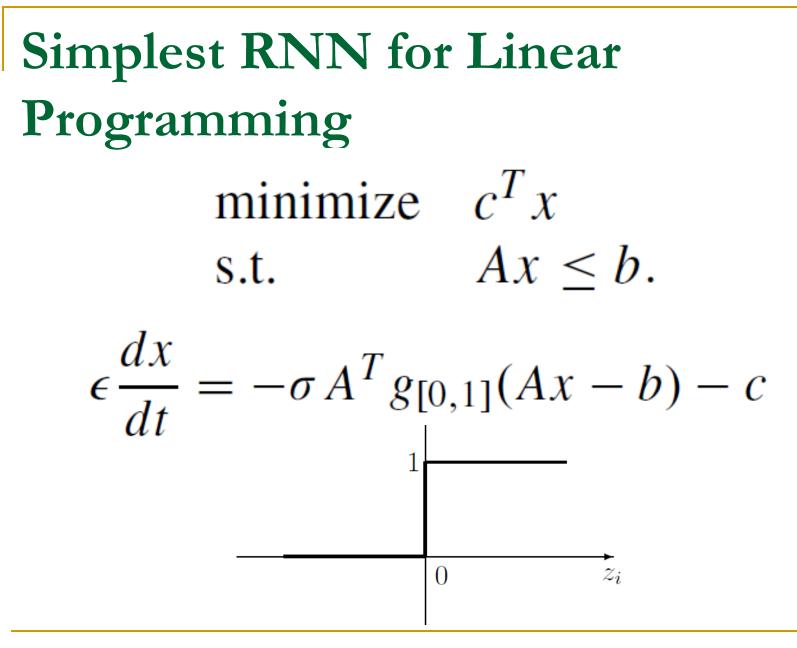
where $x \in \Re^n$, $f : \Re^n \to \Re$, $g(x) = [g_i(x), \dots, g_m(x)]^T$, $h(x) = [h_i(x), \dots, h_q(x)]^T$, l is a lower bound and u is an upper bound where $-\infty < l \le u < +\infty$. Let $\Omega = [l, u] = \prod_{i=1}^n [l_i, u_i]$. f(x), g(x) and h(x) are assumed to be twice differentiable. If f(x) or g(x) is nonconvex or h(x) is nonaffine, then (1) is a global optimization problem.

Solvable Problems

- Linear programming
- Convex optimization; e.g., convex quadratic programming
- Nonsmooth optimization
- Generalized convex optimization
- Distributed optimization
- Global optimization with nonconvex functions
- Multi-objective optimization
- Mixed-integer and combinatorial optimization

Design Principles

- Smooth penalty function methods
- Lagrangian methods
- > Duality methods
- Projection methods
- Nonsmooth penalty function methods
- Multi-agent systems theory and swarm intelligence methods



TU-Wien, Vienna, Austria; June 10, 2024

Convergence Condition

Any equilibrium point is globally stable and an optimal solution to the linear program if

$$\sigma > \frac{\|c\|_2}{\sqrt{\lambda_{\min}(AA^T)}}$$

Q. Liu and J. Wang, "Finite-time convergent recurrent neural network with a hardlimiting activation function for constrained optimization with piecewise-linear objective functions," *IEEE Transactions on Neural Networks*, vol. 22, no. 4, pp. 601-613, 2011.

Nonlinear Programming minimize f(x)subject to $c(x) \le 0, x \ge 0$ $\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TQx + c^Tx \\ \text{subject to} & Ax \leq b, \quad x \geq 0 \end{array}$

Projection Networks

$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x + (x - \alpha(\nabla f(x) + \nabla c(x)y))^+ \\ -y + (y + \alpha c(x))^+ \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x + (x - (Qx + c) + A^Ty)^+ \\ -y + (y - Ax + b)^+ \end{pmatrix}$$

$$[x_i]^+ = \max\{0, x_i\}$$

Y. Xia and J. Wang, "A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints," *IEEE Transactions on Circuits and Systems - Part I: Regular Papers*, vol. 51, no. 7, pp. 1385-1394, 2004.

One-layer Neural Net for QP

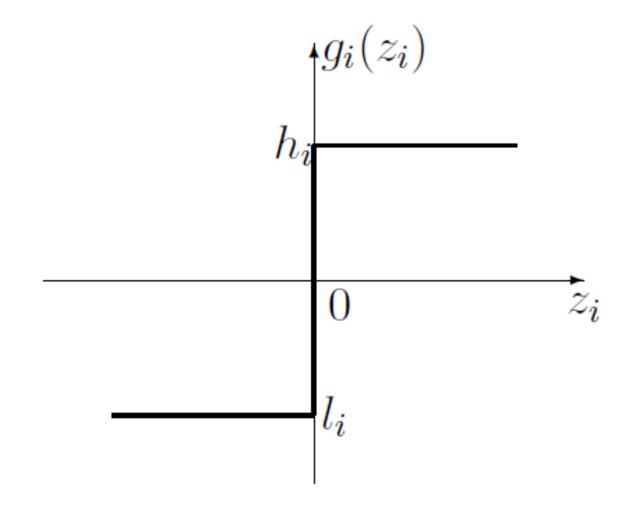
A one-layer recurrent neural net was developed^{*a*}:

$$\begin{aligned} \epsilon \frac{dz}{dt} &= -(I-P)z - [(I-P)Q + \alpha P]g(z) + q, \\ x &= ((I-P)Q + \alpha P)^{-1}(-(I-P)z + s), \end{aligned}$$

where ϵ is a positive scaling constant, $\alpha > 0$ is a parameter, $s = -q + Pq + \alpha A^T (AA^T)^{-1}b$, and $g(\cdot)$ is a vector-valued activation function. $P = A^T (AA^T)^{-1}A$.

^{*a*}Q. Liu, and J. Wang, "A one-layer recurrent neural network with a discontinuous hardlimiting activation function for quadratic programming," *IEEE Transactions on Neural Networks*, vol. 19, no. 4, pp. 558-570, 2008.

Discontinuous Activation Function



Convergence Condition

Assume that the objective function f(x) is strictly convex on the set $S = \{x \in \mathbb{R}^n : Ax = b\}$. If

$$\alpha > \lambda_{\max}(Q^2)\lambda_{\max}(Q^{-1})/4,$$

then the state vector z(t) of the neural network is globally convergent to an equilibrium point and the output vector x(t) is globally convergent to an optimal solution of QP.

Collaborative Neurodynamic Optimization

- For many complex optimization problems, a single neurodynamic optimization model cannot accomplish the tasks.
- More than one neurodynamic optimization models are needed.
- Collaboration among the models is essential for the success.

Distributed Optimization

In many applications, the objective functions are additive:

$$\min f(x) = \sum_{i=1}^{\infty} f_i(x)$$

s.t. $A_i x = b_i$
 $g_i(x) \le 0, \quad i \in \{1, 2, \dots, m\}$

- For examples, data fusion in sensor networks and coordinated operations in swarm robots.
- In such applications, distributed optimization is necessary or desirable.

Collaborative Neurodynamics

A population of coupled neurodynamic models:

$$\begin{cases} \frac{dx_i}{dt} \in 2 \left[-P_i x_i + q_i - (I - P_i)(\partial f_i(x_i) + (\partial g_i(x_i))^T (z_i + g_i(x_i))^+ + \sum_{j=1, j \neq i}^m a_{ij}(x_i + w_i - x_j - w_j)) \right] \\ \frac{dz_i}{dt} = -z_i + (z_i + g_i(x_i))^+ \\ \frac{dw_i}{dt} = x_i \end{cases}$$

Global Convergence

- It is proven that the collaborative neurodynamic system is globally convergent or output consensus to optimal solutions if the underlying graph is undirected and connected.
- In its dual formulation for resource allocation, the hidden state vectors y or z needs to reach a consensus.

Q. Liu, S. Yang, and J. Wang, "<u>A collective neurodynamic approach to distributed</u> <u>constrained optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, no. 8, pp. 1747-1758, 2017.

Global Optimization

- Due to nonconvexity, global optimization is much more challenging.
- In recent decades, population-based evolutionary and swarm intelligence algorithms emerged as prevailing methods for global optimization with many success stories in benchmark studies.
- Nevertheless, the meta-heuristic and stochastic natures of the algorithms may not ensure solution consistency or repeatability.

Pros and Cons

- Both neurodynamic optimization and evolutionary optimization approaches have their merits and limitations.
- Neurodynamic approaches are good at constrained and precise local searches with proven convergence, but prone to being trapped at local minima.
- In contrast, evolutionary optimization methods are good at global searches, but weak at constraint handling and guaranteed optimality.

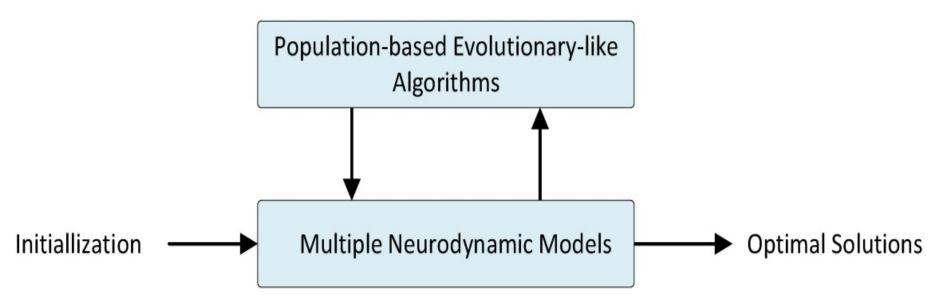
Collaborative Neurodynamic Optimization

- Given the pros and cons of the two types of computationally intelligent optimization approaches, it is natural to integrate them into ones toward hybrid intelligence.
- Collaborative neurodynamic optimization is a hybrid intelligence framework to integrate neurodynamic optimization and swarm intelligence methods.

Collaborative Neurodynamic Optimization (cont'd)

- Multiple projection neural networks are employed for scattered searches.
- A meta-heuristic rule (e.g., PSO) is used to reposition the scattered neurodynamic searches upon their convergence.
- Local searching and global repositioning are carried out alternately until no more reduction of the objective function value could be made.

Collaborative Neurodynamic Optimization (cont'd)



Z. Yan, J. Fan, and J. Wang, "<u>A collective neurodynamic approach to constrained global</u> optimization," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, no. 5, pp. 1206-1215, 2017.

Desirable Properties

- In principle, the collaborative neurodynamic optimization approach is able to find global optimal solutions for any nonconvex objective functions and feasible regions, provided that there are sufficient number of neurodynamic optimization models or sufficient time for search.
- In theory, it is proven that it is globally convergent with probability one (almost sure convergence).

Two-timescale Duplex Neurodynamic Systems

- For a class of special nonconvex functions called biconvex functions, collaborative neurodynamic approaches may be customized.
- The two-timescale Duplex Neurodynamic Systems employs two recurrent neural networks, resulting in minimum spatial complexity.
- They operate in two timescales to enhance diversity.

Two-Timescale Duplex Architecture



Che and J. Wang, "<u>A two-timescale duplex neurodynamic approach to biconvex</u> <u>optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 30, no. 8, pp. 2503-2514, 2019.

Mixed-integer Optimization

$$\begin{aligned} \min_{\boldsymbol{x},\boldsymbol{y}} & f(\boldsymbol{x},\boldsymbol{y}) \\ \text{s.t.} & (\boldsymbol{x}^T,\boldsymbol{y}^T)^T \in \Omega \subseteq \Re^{m+n} \\ & \boldsymbol{y} \in \{-1,1\}^n \quad \text{or} \quad \boldsymbol{y} \in \{0,1\}^n \end{aligned}$$

Constraint Reformulations

By introducing an instrumental vector *z*, the binary or bipolar constraints cab be converted as one of the following equality/inequality constraints:

TABLE I: Alternative formulations of $\{0,1\}^n$ and $\{-1,1\}^n$.

$$\{0,1\}^n \quad \begin{array}{l} (2\boldsymbol{y}-\boldsymbol{e})^T (2\boldsymbol{z}-\boldsymbol{e}) = n, \ \|2\boldsymbol{z}-\boldsymbol{e}\|_2^2 \le n, \ \boldsymbol{y} \in [0,1]^n \ [12] \\ \boldsymbol{y} \circ (\boldsymbol{z}-\boldsymbol{e}) = \boldsymbol{0} \ \text{and} \ (\boldsymbol{y}-\boldsymbol{e}) \circ \boldsymbol{z} = \boldsymbol{0} \\ (2\boldsymbol{y}-\boldsymbol{e}) \circ (2\boldsymbol{z}-\boldsymbol{e}) - \boldsymbol{e} = \boldsymbol{0}, \ \boldsymbol{y} \in [0,1]^n, \ \text{and} \ \boldsymbol{z} \in [0,1]^n \\ (\boldsymbol{e}-\boldsymbol{z}) \circ \boldsymbol{y} \le \boldsymbol{0}, \ (\boldsymbol{e}-\boldsymbol{y}) \circ \boldsymbol{z} \le \boldsymbol{0}, \ \boldsymbol{y} \in [0,1]^n, \ \text{and} \ \boldsymbol{z} \in [0,1]^n \\ \mathbf{y}^T \boldsymbol{z} = n, \ \|\boldsymbol{z}\|_2^2 \le n, \ \boldsymbol{y} \in [-1,1]^n \ [12] \\ \{-1,1\}^n \quad \begin{array}{l} \boldsymbol{y}^T \boldsymbol{z} = n, \ \|\boldsymbol{z}\|_2^2 \le n, \ \boldsymbol{y} \in [-1,1]^n \ [12] \\ (\boldsymbol{y}+\boldsymbol{e}) \circ (\boldsymbol{z}-\boldsymbol{e}) = \boldsymbol{0} \ \text{and} \ (\boldsymbol{y}-\boldsymbol{e}) \circ (\boldsymbol{z}+\boldsymbol{e}) = \boldsymbol{0} \\ \boldsymbol{y} \circ \boldsymbol{z}-\boldsymbol{e} = \boldsymbol{0}, \ \boldsymbol{y} \in [-1,1]^n, \ \text{and} \ \boldsymbol{z} \in [-1,1]^n \\ (\boldsymbol{e}-\boldsymbol{z}) \circ (\boldsymbol{e}+\boldsymbol{y}) \le \boldsymbol{0}, \ (\boldsymbol{e}-\boldsymbol{y}) \circ (\boldsymbol{e}+\boldsymbol{z}) \le \boldsymbol{0}, \ \boldsymbol{y} \in [-1,1]^n, \ \text{and} \ \boldsymbol{z} \in [-1,1]^n \end{array} \right.$$

H. Che and J. Wang, "<u>A two-timescale duplex neurodynamic approach to mixed-integer</u> optimization," *IEEE Trans. Neural Networks and Learning Systems*, vol. 32, pp. 36-48, 2021.

Two-Timescale Neurodynamics

$$\epsilon_{\tilde{x}} \frac{d\tilde{x}}{dt} = P(\nabla_{\tilde{x}} f(\tilde{x}, y), \tilde{x}),$$

$$\epsilon_{y} \frac{dy}{dt} = P(\nabla_{y} f(\tilde{x}, y), y),$$

where $\tilde{x} = (x^{T}, z^{T})^{T}$

TU-Wien, Vienna, Austria; June 10, 2024

Existing CNO Paradigms

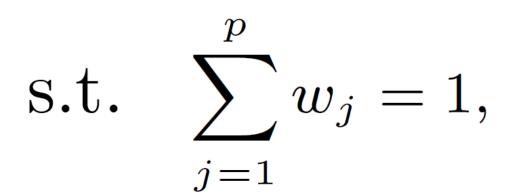
- Nonnegative matrix factorization
- Feature selection
- Constrained clustering
- Supervised learning
- Portfolio selection
- Hash-bit selection
- Sparse signal reconstruction
- Vehicle-task assignment
- Model predictive control
- HVAC operation planning and control

Feature Selection

- Feature selection is an essential part of data processing.
- It aims at selecting a subset of the most informative features from all available features.
- Apart from the learning capability of neural networks for feature selection, the optimization capability of recurrent neural networks can also play a vital role.

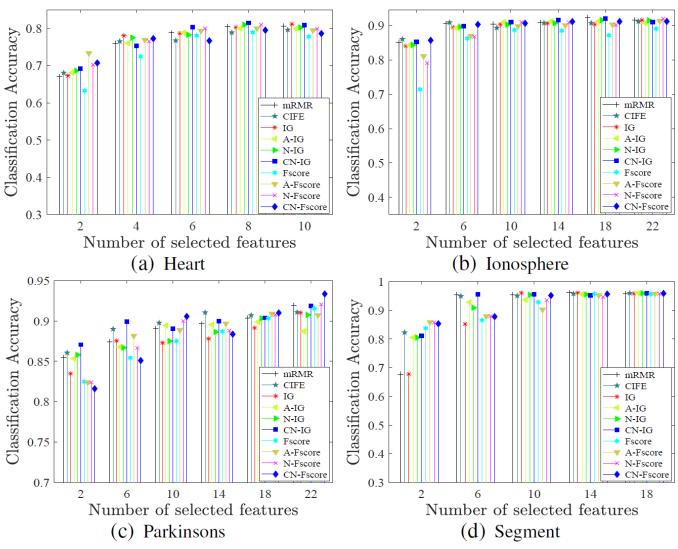
Problem Formulations

 $\min_{w,\gamma} f(w,\gamma) = rac{\gamma^2}{2} w^T Q w - \gamma \tau^T w,$

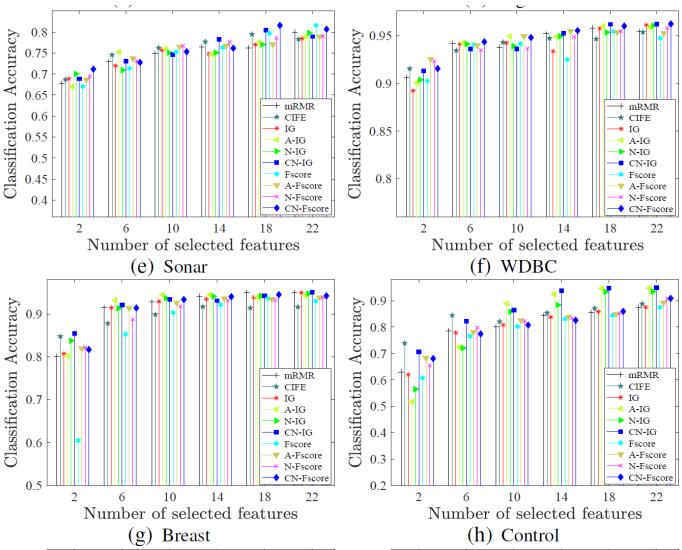


$w \ge 0, \gamma > 0.$

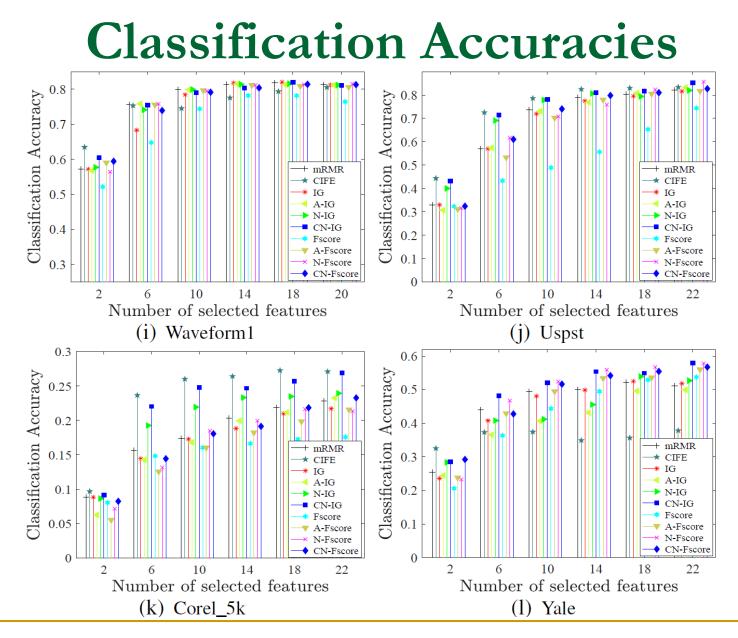
Classification Accuracies



Classification Accuracies



TU-Wien, Vienna, Austria; June 10, 2024



TU-Wien, Vienna, Austria; June 10, 2024

Classification Accuracies

Dataset	Method									
	mRMR	CIFE	IG	A-IG	N-IG	CN-IG	Fscore	A-Fscore	N-Fscore	CN-Fscore
Heart	0.8060	0.8006	0.8113	0.8096	0.8110	0.8135	0.7394	0.8133	0.8073	0.7991
Ionosphere	0.9178	0.9128	0.9166	0.9170	0.9180	0.9191	0.8610	0.9103	0.9109	0.9158
Parkinsons	0.8693	0.8734	0.8644	0.8790	0.8644	0.8675	0.8622	0.8772	0.8636	0.8661
Segment	0.8770	0.9066	0.8459	0.8798	0.8778	0.9081	0.8814	0.8843	0.8862	0.8919
Sonar	0.7551	0.7844	0.7471	0.7579	0.7471	0.7627	0.7726	0.7740	0.7742	0.7763
WDBC	0.9500	0.9513	0.9447	0.9563	0.9498	0.9548	0.9356	0.9604	0.9575	0.9606
Breast	0.9430	0.9225	0.9366	0.9403	0.9395	0.9442	0.8624	0.9382	0.9383	0.9481
Control	0.8281	0.8876	0.8241	0.8555	0.8433	0.8982	0.7920	0.8408	0.8451	0.8390
Waveform1	0.8085	0.7896	0.7973	0.8030	0.7995	0.8032	0.7076	0.8064	0.8064	0.7946
Uspst	0.7083	0.7704	0.6971	0.7040	0.7200	0.7739	0.5768	0.6848	0.7118	0.6945
Corel_5k	0.2100	0.3034	0.1971	0.1915	0.1995	0.2618	0.1705	0.1768	0.1955	0.2171
Yale	0.4498	0.3387	0.4172	0.3712	0.3644	0.4431	0.3744	0.4568	0.4490	0.4530
Brain	0.7705	0.7306	0.7661	0.6817	0.7859	0.7863	0.7346	0.6489	0.6961	0.6950
Average	0.7610	0.7671	0.7512	0.7498	0.7554	0.7797	0.7131	0.7517	0.7571	0.7578

TABLE IV: Average SVM classification accuracies of the ten feature selection methods on the thirteen benchmark datasets.

Y. Wang, J. Wang, and N. R. Pal, "<u>Supervised feature selection via collaborative</u> <u>neurodynamic optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 35, no. 5, pp. 6878-6892, 2024.

Classification Accuracies

Dataset	Method									
	mRMR	CIFE	IG	A-IG	N-IG	CN-IG	Fscore	A-Fscore	N-Fscore	CN-Fscore
Heart	0.7129	0.7111	0.7313	0.7269	0.7313	0.7357	0.7306	0.7350	0.7306	0.7277
Ionosphere	0.8780	0.8760	0.8619	0.8678	0.8679	0.8715	0.8495	0.8503	0.8515	0.8821
Parkinsons	0.9246	0.9288	0.8971	0.8990	0.9007	0.9325	0.8907	0.8993	0.9078	0.9016
Segment	0.9160	0.9415	0.9013	0.9330	0.9366	0.9361	0.9205	0.9206	0.9318	0.9339
Sonar	0.7680	0.7670	0.7622	0.7642	0.7647	0.7707	0.7447	0.7447	0.7532	0.7657
WDBC	0.9389	0.9381	0.9357	0.9402	0.9403	0.9374	0.9352	0.9390	0.9357	0.9416
Breast	0.8593	0.8412	0.8651	0.8731	0.8803	0.8817	0.8465	0.8607	0.8469	0.8615
Control	0.7902	0.7609	0.7864	0.8215	0.8054	0.8557	0.7867	0.7870	0.7882	0.7961
Waveform1	0.7257	0.7129	0.7107	0.7216	0.7216	0.7364	0.7054	0.7349	0.7236	0.7368
Uspst	0.6519	0.7330	0.6490	0.6491	0.7090	0.7137	0.5002	0.6513	0.6317	0.6520
Corel_5k	0.1708	0.2053	0.1649	0.1690	0.2098	0.2107	0.1441	0.1463	0.1553	0.1483
Yale	0.5019	0.3998	0.5004	0.4616	0.5143	0.5537	0.4601	0.4744	0.5449	0.5017
Brain	0.6832	0.6288	0.6749	0.6208	0.6346	0.6760	0.6150	0.6674	0.6615	0.6753
Average	0.7324	0.7265	0.7262	0.7268	0.7397	0.7548	0.7023	0.7239	0.7279	0.7326

TABLE V: Average 1-NN classification accuracies of the ten feature selection methods on the thirteen benchmark datasets.

Y. Wang, J. Wang, and N. R. Pal, "<u>Supervised feature selection via collaborative</u> <u>neurodynamic optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 35, no. 5, pp. 6878-6892, 2024.

Classification Accuracies

Dataset	Method									
Duluser	mRMR	CIFE	IG	A-IG	N-IG	CN-IG	Fscore	A-Fscore	N-Fscore	CN-Fscore
Heart	0.7788	0.7675	0.7698	0.7624	0.7720	0.7748	0.7529	0.7867	0.7884	0.7703
Ionosphere	0.9101	0.9065	0.9044	0.9048	0.9049	0.9134	0.8456	0.8880	0.8880	0.9036
Parkinsons	0.8752	0.8861	0.8697	0.8706	0.8834	0.8914	0.8768	0.8770	0.8818	0.8822
Segment	0.9121	0.9377	0.8997	0.9366	0.9362	0.9379	0.9267	0.9269	0.9285	0.9344
Sonar	0.7170	0.7236	0.7250	0.7252	0.7281	0.7383	0.7389	0.7391	0.7459	0.7461
WDBC	0.9361	0.9313	0.9340	0.9343	0.9342	0.9393	0.9351	0.9388	0.9355	0.9406
Breast	0.9397	0.9219	0.9344	0.9400	0.9389	0.9403	0.8648	0.9356	0.9295	0.9365
Control	0.7761	0.8605	0.7786	0.7980	0.7995	0.8606	0.7837	0.8071	0.8018	0.7933
Waveform1	0.7516	0.7512	0.7361	0.7577	0.7586	0.7518	0.7072	0.7434	0.7493	0.7457
Uspst	0.6657	0.7185	0.6566	0.6582	0.7068	0.7163	0.5224	0.6387	0.6972	0.6813
Corel_5k	0.1538	0.1920	0.1481	0.1482	0.1937	0.1934	0.1373	0.1458	0.1578	0.1595
Yale	0.4090	0.3393	0.4152	0.3889	0.4336	0.4874	0.4522	0.4650	0.4705	0.4946
Brain	0.6490	0.6501	0.6357	0.6651	0.6559	0.6507	0.6563	0.6408	0.6351	0.6886
Average	0.7288	0.7374	0.7236	0.7300	0.7420	0.7535	0.7077	0.7333	0.7392	0.7444

TABLE VI: Average RF classification accuracies of the ten feature selection methods on the thirteen benchmark datasets.

Y. Wang, J. Wang, and N. R. Pal, "<u>Supervised feature selection via collaborative</u> <u>neurodynamic optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 35, no. 5, pp. 6878-6892, 2024.

NMF Problem

A representation of patterns as a linear combination of bases:

$V \approx WH$

where

V: $n \times m$ matrix. Each column contains *n* nonnegative values of one of *m* patterns.

- *W*: $(n \times p)$: *p* columns of *W* are basis vectors.
- *H*: $(p \times m)$: each column of *H* is a weight vector.

D. D. Lee and H. S. Seung. Learning the parts of objects by nonnegative matrix factorization. *Nature*, 401:788-791, 1999.

Problem Formulations

$$\min f(W, H)$$

s.t. $W \ge 0, H \ge 0$

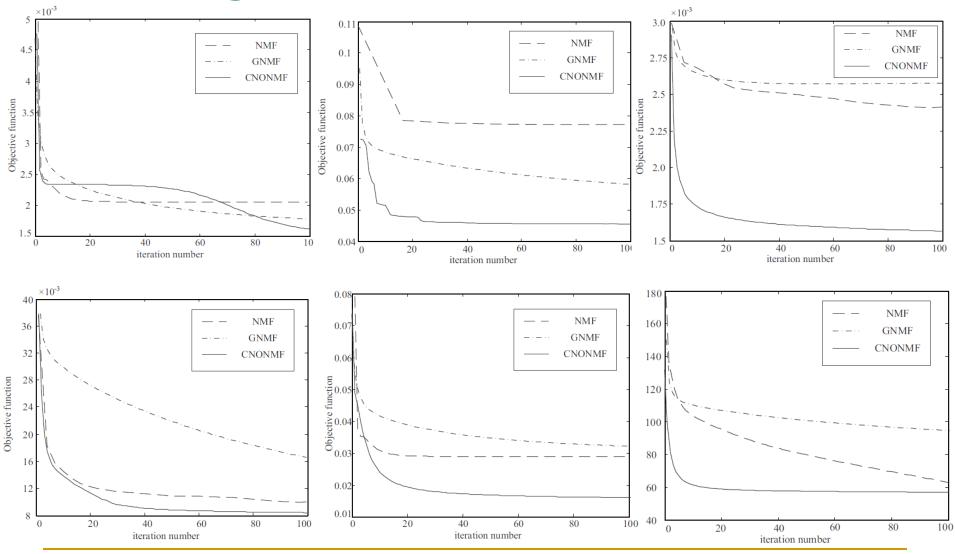
Squared Frobenius norm:

$$f_1(W,H) = \|V - WH\|_2^2 = \sum_{i,j} (V_{ij} - \sum_{k=1}^r w_{ik}v_{kj})^2$$

Kullback-Leibler divergence:

$$f_2(W, H) = D(V||WH) = \sum_{i,j} (V_{ij} \log \frac{V_{ij}}{\sum\limits_{k=1}^r w_{ik} v_{kj}} V_{ij} - \sum\limits_{k=1}^r w_{ik} v_{kj})$$

Convergent Behaviors



Clustering Results (accuracy)

CLUSTERING PERFORMANCE OF THE ACCURACY INDEX [AC (%)]

Dataset	IRIS	Wine	Digit	ORLFace	COIL20	PIE	TDT2
NMF [11]	78.0 ± 5.2	88.7 ± 0.5	97.2 ± 0.0	61.2 ± 0.0	60.5 ± 0.0	63.3 ± 3.7	79.9 ± 11.7
MUNMF [17]	75.5 ± 6.1	88.8 ± 0.8	93.8 ± 0.2	15.6 ± 0.0	13.4 ± 0.0	68.7 ± 2.5	62.6 ± 11.4
APGNMF [20]	88.1 ± 1.0	92.3 ± 0.1	97.2 ± 0.0	39.2 ± 0.0	61.2 ± 0.0	71.4 ± 4.2	87.6 ± 9.2
HALS [18]	88.1 ± 1.0	89.6 ± 0.2	97.2 ± 0.0	65.8 ± 0.0	70.5 ± 0.0	73.9 ± 2.1	81.1 ± 3.7
GNMF [21]	90.7 ± 0.0	93.9 ± 0.0	$\textbf{99.8} \pm \textbf{0.0}$	64.5 ± 0.0	75.3 ± 0.0	78.9 ± 4.5	93.4 ± 2.7
RNNNMF [29]	73.3 ± 4.3	91.0 ± 0.3	92.4 ± 0.0	58.5 ± 0.0	42.0 ± 0.0	66.5 ± 3.1	82.5 ± 4.4
CNONMF [34]	$\textbf{97.3} \pm \textbf{0.0}$	91.5 ± 0.0	97.2 ± 0.0	65.8 ± 0.0	70.5 ± 0.0	75.1 ± 2.2	87.8 ± 1.5
CNOWMNMF	$\textbf{97.3} \pm \textbf{0.0}$	$\textbf{94.6} \pm \textbf{0.0}$	97.9 ± 0.0	70.0 ± 0.0	70.5 ± 0.0	78.5 ± 0.9	88.5 ± 1.3
CNOWMGNMF	90.7 ± 0.0	93.9 ± 0.0	$\textbf{99.8} \pm \textbf{0.0}$	$\textbf{71.3} \pm \textbf{0.0}$	$\textbf{79.7} \pm \textbf{0.0}$	$\textbf{80.1} \pm \textbf{1.4}$	$\textbf{94.1} \pm \textbf{1.2}$

J. Fan and J. Wang, "A collective neurodynamic optimization approach to nonnegative matrix factorization," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, pp. 2344-2356, 2017.

Clustering Results (NMI)

CLUSTERING PERFORMANCE OF THE NORMALIZED MUTUAL INFORMATION INDEX (A	VMI (%))
--	----------

Dataset	IRIS	Wine	Digit	ORLFace	COIL20	PIE	TDT2
NMF [11]	60.8 ± 6.7	73.7 ± 0.7	89.2 ± 0.0	78.6 ± 0.0	72.5 ± 0.0	80.4 ± 1.1	82.0 ± 9.2
MUNMF [17]	61.5 ± 3.3	70.6 ± 1.1	83.7 ± 0.5	34.8 ± 0.0	11.5 ± 0.0	85.9 ± 1.6	75.2 ± 8.9
APGNMF [20]	74.3 ± 2.6	75.3 ± 0.6	91.2 ± 0.0	62.9 ± 0.0	69.3 ± 0.0	86.5 ± 1.5	86.3 ± 8.4
HALS [18]	74.3 ± 2.0	74.2 ± 1.0	89.2 ± 0.0	79.4 ± 0.0	77.0 ± 0.0	87.4 ± 0.9	82.1 ± 3.1
GNMF [21]	79.3 ± 0.0	80.6 ± 0.0	$\textbf{98.8} \pm \textbf{0.0}$	80.5 ± 0.0	87.5 ± 0.0	89.1 ± 1.6	88.0 ± 5.7
CNONMF	$\textbf{90.8} \pm \textbf{0.1}$	$\textbf{80.9} \pm \textbf{0.0}$	91.7 ± 0.0	81.9 ± 0.0	77.0 ± 0.0	88.8 ± 0.2	86.6 ± 1.1
CNOGNMF	79.3 ± 0.0	80.6 ± 0.0	$\textbf{98.8} \pm \textbf{0.0}$	$\textbf{83.8} \pm \textbf{0.0}$	$\textbf{91.5} \pm \textbf{0.0}$	$\textbf{89.2} \pm \textbf{0.4}$	$\textbf{91.2} \pm \textbf{1.2}$

J. Fan and J. Wang, "A collective neurodynamic optimization approach to nonnegative matrix factorization," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, pp. 2344-2356, 2017.

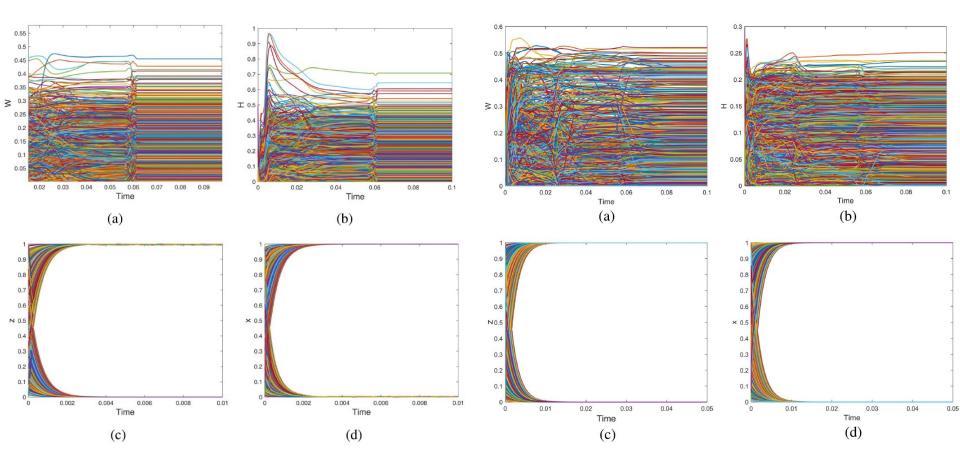
Sparse Nonnegative Matrix Factorization

Factorized matrices with higher sparsity levels show stronger robustness against noises and occupy less storage space.

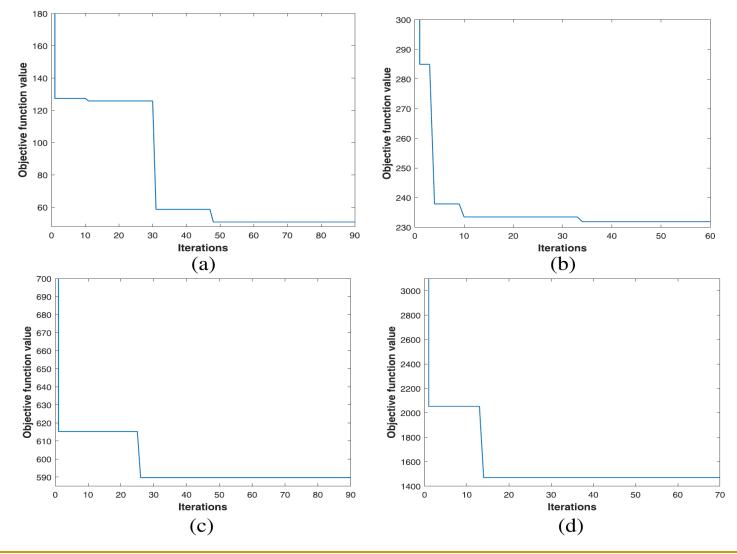
$$\min_{W,H,y} \|V - WH\|_F^2 + \gamma \sum_{i=1}^m \sum_{j=1}^r y_{ij}$$

s.t. $0 \le w_{ij} \le M y_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, r$
 $y \in \{0, 1\}^{\text{mr}}, \quad h_{pq} \ge 0, \quad p = 1, \dots, r, \quad q = 1, \dots, n$

Neuronal Convergence



Objective Minimization



TU-Wien, Vienna, Austria; June 10, 2024

Evaluation Measures

RRE =
$$\frac{\|V - WH\|_F^2}{\|V\|_F^2}$$
, SEM = $\sum_{j=1}^r \frac{\|w_j\|_0}{\mathrm{mr}}$

$$GS = \frac{1}{2} \left(\exp\left(-\frac{RRE^2}{\sigma_{RRE}^2}\right) + \exp\left(-\frac{SEM^2}{\sigma_{SEM}^2}\right) \right).$$

Comparative Results (Yale)

Performance measure	RRE	SEM	GS
NMFSC [17]	0.0572	0.4746	0.5943
NMFSMU [69]	0.9999	0.4527	0.1218
GA-MIOP [70]	Infeasible	Infeasible	Infeasible
rsNNLS [19]	0.2023	0.4983	0.4668
NeNMF [53]	0.0658	0.4479	0.6103
NMFS [71]	0.9991	0.4722	0.1077
MOSNMF [21]	0.0923	0.3096	0.7293
Tanh-NMF [23]	0.0427	0.4516	0.6159
DTPNN-SNMF [22]	0.0625	0.2751	0.7831
Method herein	0.2068	0.0859	0.8473

H. Che, J. Wang, and A. Cichocki, "<u>Bicriteria sparse nonnegative matrix</u> <u>factorization via two-timescale duplex neurodynamic optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 34, no. 8, 2023.

Comparative Results (ORL)

Performance measure	RRE	SEM	GS
NMFSC [17]	0.0166	0.7949	0.5054
NMFSMU [69]	0.9999	0.4116	0.1557
GA-MIOP [70]	Infeasible	Infeasible	Infeasible
rsNNLS [19]	0.0748	0.4983	0.5710
NeNMF [53]	0.0172	0.4430	0.6279
NMFS [71]	0.9990	0.4973	0.0911
MOSNMF [21]	0.0198	0.1019	0.9641
Tanh-NMF [23]	0.0050	0.4589	0.6166
DTPNN-SNMF [22]	0.0105	0.3064	0.7611
Method herein	0.0191	0.0768	0.9788

H. Che, J. Wang, and A. Cichocki, "<u>Bicriteria sparse nonnegative matrix</u> <u>factorization via two-timescale duplex neurodynamic optimization</u>," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 34, no. 8, 2023.

Sparse Bayesian Regression

- Regression in a sparse Bayesian learning framework is usually formulated as a global optimization problem with a nonconvex objective function.
- Due to the nonconvexity, the solution quality and consistency depend heavily on the initial values of the optimization solver.

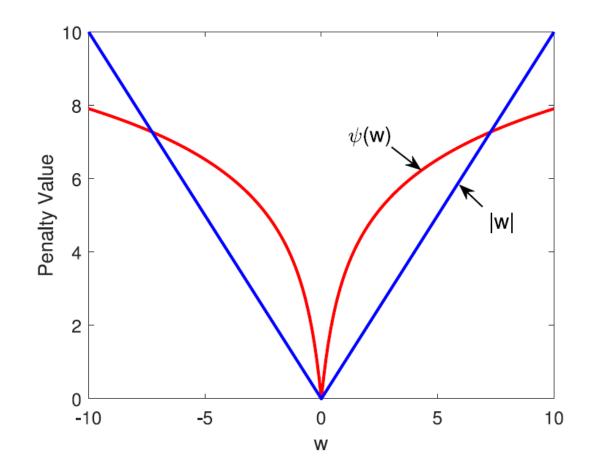
Problem Formulation

$$\min L(w, \sigma, \gamma)$$

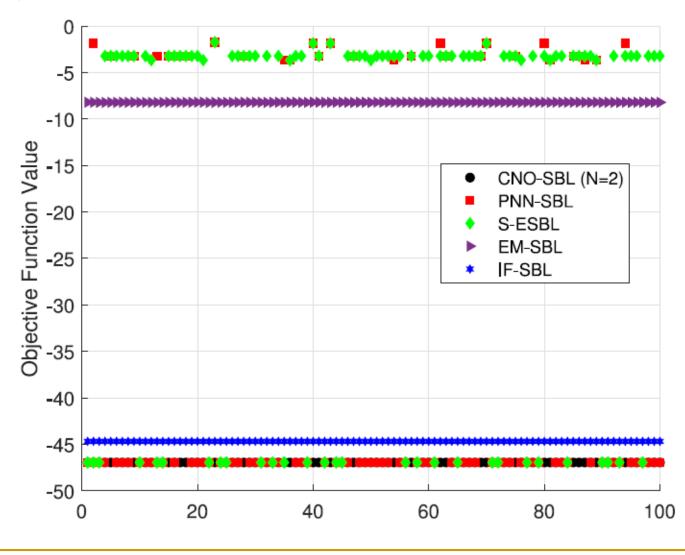
s.t. $\sigma \ge \varepsilon, \ \gamma_i \ge \varepsilon, \quad i = 1, ..., n.$
 $(w, \sigma, \gamma) = \frac{\|y - \Phi w\|^2}{\sigma} + \sum_{i=1}^n f(w_i, \sigma, \gamma_i) + (m-2) \ln \sigma$
 $f(w_i, \sigma, \gamma_i) \coloneqq (w_i^2 / \gamma_i) + \ln(1 + [s_0 \gamma_i / \sigma]).$

W. Zhou, H. Zhang, and J. Wang, "Sparse Bayesian learning based on collaborative neurodynamic optimization," *IEEE Transactions on Cybernetics*, vol. 52, no. 12, 2022.

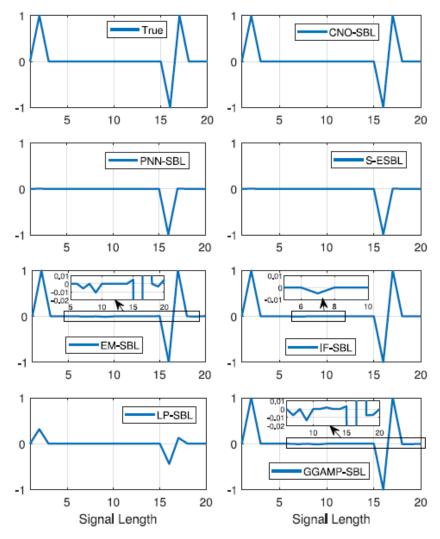
Sparsity-inducing Effect



Objective Function Values



Sparse Signal Reconstruction



Sparse Signal Reconstruction

Signal Types	Methods	nRMSE (mean+std)	SR	$\ \widehat{w}\ _0$
	PNN-SBL	0.2675 ± 0.4141	71%	4.03
	S-ESBL [26]	0.5965 ± 0.3820	29%	5.64
	EM-SBL [9]	0.0111 ± 0.0000	0%	9.00
	IF-SBL [23]	0.0062 ± 0.0000	0%	4.00
± 1 Spike	LP-SBL [15]	0.6286 ± 0.2727	0%	2.44
-	GGAMP- SBL [24]	0.0127 ± 0.0000	0%	9.00
	$\begin{array}{l} \text{CNO-SBL} \\ (N=2) \end{array}$	0.0057 ± 0.0000	$\mathbf{100\%}$	3.00
	PNN-SBL	0.2109 ± 0.3833	71%	3.76
	S-ESBL [26]	0.2451 ± 0.4125	68%	3.92
	EM-SBL [9]	0.0273 ± 0.0000	0%	11.00
	IF-SBL [23]	0.1065 ± 0.2717	84%	3.39
Gaussian	LP-SBL [15]	0.5807 ± 0.2429	2%	1.80
	GGAMP- SBL [24]	0.0207 ± 0.0000	0%	10.00
	$\begin{array}{l} \text{CNO-SBL} \\ (N=2) \end{array}$	0.0014 ± 0.0000	100 %	3.00
	PNN-SBL	0.4571 ± 0.5325	58%	3.52
	S-ESBL [26]	0.4680 ± 0.5328	57%	3.63
	EM-SBL [9]	0.0185 ± 0.0000	0%	9.00
	IF-SBL [23]	0.0515 ± 0.2168	96%	3.14
ST	LP-SBL [15]	0.5279 ± 0.2957	0%	2.95
	GGAMP- SBL [24]	0.0204 ± 0.0000	0%	11.00
	$\begin{array}{l} \text{CNO-SBL} \\ (N=2) \end{array}$	0.0074 ± 0.0000	100 %	3.00

PDE Identification

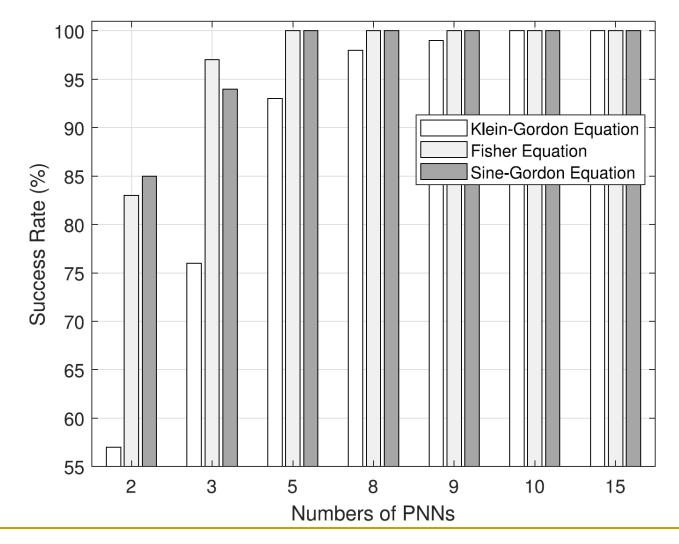
THREE TYPICAL PDES AND IDENTIFICATION RESULTS USING CNO-SBL

Name	PDE to be identified	Identified PDE
Klein-Gordon equation	$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} - u - u^3$	$\frac{\partial^2 u}{\partial t^2} = 0.9995 \frac{\partial^2 u}{\partial x^2} \\ -1.0003u - 0.9965u^3$
Fisher's equation	$\frac{\partial u}{\partial t} = u - u^2 + 0.1 \frac{\partial^2 u}{\partial x^2}$	$\frac{\partial u}{\partial t} = 1.0009u$ $-1.0012u^2 + 0.0998 \frac{\partial^2 u}{\partial x^2}$
Sine-Gordon equation	$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} - \sin(u)$	$\frac{\partial^2 u}{\partial t^2} = 0.9990 \frac{\partial^2 u}{\partial x^2}$ $-0.9987 \sin(u)$

PDE Identification Results

PDE	Methods	nRMSE	SR	$\ \widehat{w}\ _0$
		(mean+std)		
	PNN-SBL	1.3599 ± 0.6038	6%	5.32
	S-ESBL [26]	1.3493 ± 0.5020	0%	9.31
	EM-SBL [9]	0.0135 ± 0.0000	0%	6.00
Klein-	IF-SBL [23]	1.4998 ± 0.5794	0%	3.60
Gordon	LP-SBL [15]	0.0023 ± 0.0073	96%	3.09
equation	GGAMP-	0.0310 ± 0.1239	0%	4.00
-	SBL [24]			
	CNO-SBL	0.0020 ± 0.0000	100 %	3.00
	(N=10)		• •	
	PNN-SBL	0.7428 ± 0.5670	23%	3.21
	S-ESBL [26]	1.0713 ± 0.2375	0%	9.12
	EM-SBL [9]	0.0236 ± 0.0000	0%	7.00
	IF-SBL [23]	1.1470 ± 0.3709	0%	5.81
Fisher's	LP-SBL [15]	0.6924 ± 0.3553	21%	3.00
equation	GGAMP-	0.6898 ± 0.3644	0%	4.79
	SBL [24]	0.0090 ± 0.3044	070	4.19
	CNO-SBL	0.0010 ± 0.0000	100%	3.00
	(N=5)			
	PNN-SBL	0.8953 ± 0.3671	10%	2.91
	S-ESBL [26]	0.8989 ± 0.4050	12%	2.97
	EM-SBL [9]	0.0034 ± 0.0000	$\mathbf{100\%}$	2.00
Sine-	IF-SBL [23]	0.8456 ± 0.3854	8%	3.23
Gordon	LP-SBL [15]	0.5741 ± 0.4369	1%	2.61
equation	GGAMP-	0.3709 ± 0.4956	3%	3.35
-1	SBL [24]	0.0109 ± 0.4300	J 70	0.00
	CNO-SBL	0.0011 ± 0.0000	100%	2.00
	(N=5)	0.0011 ± 0.0000	10070	2.00

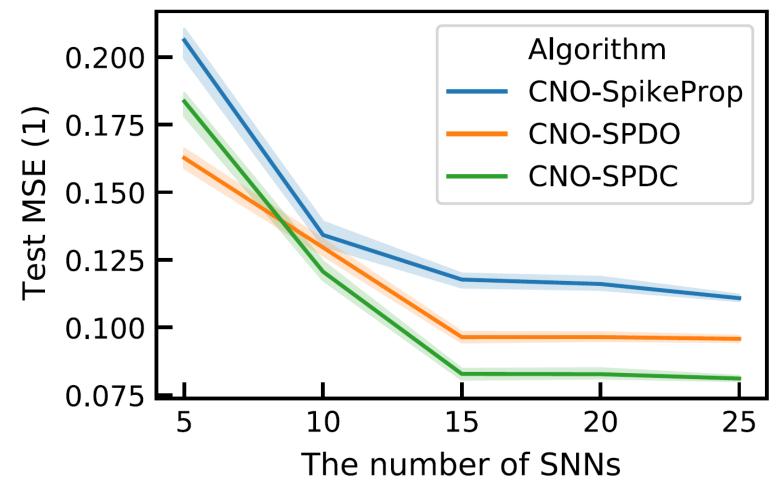
Success Rate vs. Population Size



TU-Wien, Vienna, Austria; June 10, 2024

Spiking NN Supervised Learning

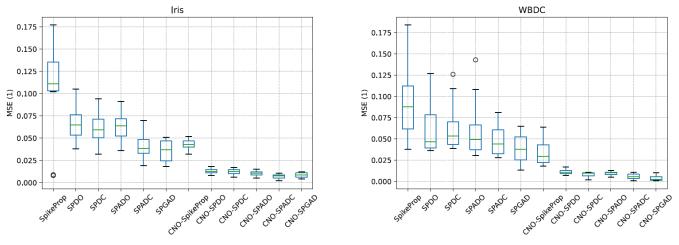
Statlog Landsat



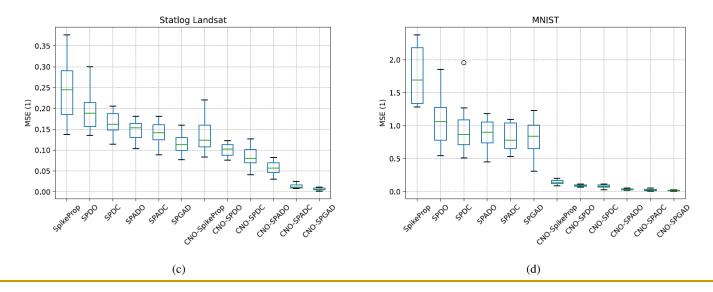
Average Training Errors

Algorithm	Iris	WBCD	Statlog Landsat	MNIST
SpikeProp [11]	0.102	0.057	0.205	1.562
SpikePropRT [36]	0.080	0.012	3.921	_
SpikePropAD [18]	0.010	0.421	3.203	-
SPSL1/2 [34]	0.023	0.035	-	_
MC-SEFRON [37]	0.033	0.017	-	0.086
TMM [38]	0.018	0.028	-	_
SPDO	0.058	0.040	0.192	0.966
SPDC	0.049	0.043	0.152	0.848
P-SPDO	0.108	0.069	0.234	1.487
P-SPDC	0.094	0.066	0.226	1.375
SPADO	0.053	0.035	0.138	0.843
SPADC	0.034	0.032	0.123	0.621
SPGAD	0.032	0.025	0.112	0.635
CNO-SpikeProp	0.042	0.023	0.119	0.123
CNO-SPDO	0.012	0.009	0.081	0.082
CNO-SPDC	0.013	0.004	0.098	0.079
CNO-SPADO	0.010	0.006	0.064	0.030
CNO-SPADC	0.007	0.003	0.018	0.038
CNO-SPGAD	0.009	0.002	0.008	0.024

Monte Carlo Results



(a)



TU-Wien, Vienna, Austria; June 10, 2024

Training and Testing Accuracy

CLASSIFICATION PERFORMANCES OF THE 16 SNN ALGORITHMS IN TERMS OF MICRO AVERAGED ACCURACY WITH TRAINING/TEST SAMPLES IN THE FOUR BENCHMARK DATA SETS

Algorithm	Iris	WBCD	Statlog Landsat	MNIST
SpikeProp [11]	97.2±0.15 /96.7±0.13	97.3±0.17/94.2±0.20	85.8±0.16/80.3±0.18	_
MC-SEFRON [37]	98.4/97.1	98.4/97.4	-	93.64/92.3
TMM [38]	97.5±0.8/97.2±1.0	97.4±0.3/97.2±0.5	-	-
SPDO	98.5±0.10/97.8±0.12	98.2±0.09/96.6±0.13	88.4±0.08/85.3±0.06	94.5±0.11/92.3±0.10
SPDC	98.7±0.08/98.0±0.06	98.6±0.12/97.1±0.14	88.9±0.08/85.9±0.07	95.2±0.09/93.6±0.06
P-SPDO	96.8±0.14/94.3±0.16	96.4±0.15/95.2±0.14	87.7±0.19/84.3±0.16	92.8±0.13/90.7±0.11
P-SPDC	97.0±0.09/95.8±0.13	96.8±0.14/95.4±0.12	87.2±0.10/84.8±0.09	91.9±0.08/90.2±0.08
SPADO	99.2± 0.08/98.3±0.10	99.6±0.07/98.2±0.06	89.3±0.06/88.4±0.05	96.6±0.06/95.7±0.04
SPADC	99.5±0.05/98.3±0.03	99.8±0.06/98.5±0.08	91.2±0.06/89.1±0.04	97.7±0.07/96.3±0.05
SPGAD	99.8±0.03/99.3±0.02	99.8±0.05/99.1±0.02	93.7±0.04/92.5±0.03	98.8±0.05/97.8±0.04
CNO-SpikeProp	98.4±0.03/96.6±0.02	99.1±0.01/98.4±0.02	88.2±0.03/86.3±0.03	95.4±0.02/93.3±0.01
CNO-SPDO	99.8±0.02/98.7±0.01	99.6±0.02/98.4±0.02	95.6±0.01/94.3±0.02	98.7±0.02/98.2±0.01
CNO-SPDC	99.8±0.01/99.2±0.02	99.6±0.01/98.7±0.02	95.8±0.03/95.1±0.02	98.9±0.01/98.5±0.01
CNO-SPADO	$100{\pm}0.00/100{\pm}0.00$	$100{\pm}0.00/100{\pm}0.00$	98.6±0.02/97.8±0.03	99.2±0.01/98.4±0.01
CNO-SPADC	$100{\pm}0.00/100{\pm}0.00$	$100{\pm}0.00/100{\pm}0.00$	98.4±0.02/97.5±0.01	98.9±0.01/98.2±0.01
CNO-SPGAD	$100{\pm}0.00/100{\pm}0.00$	$100{\pm}0.00/100{\pm}0.00$	98.8±0.01/98.2±0.00	99.4±0.02/98.9±0.01

J. Zhao, J. Yang, J. Wang, and W. Wu, "<u>Spiking neural network regularization with fixed</u> and adaptive drop-keep probabilities," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 33, no. 8, pp. 4096-4109, 2022.

Classification Performance

AVERAGE PRECISION, RECALL, AND F1-SCORE OF THE 14 SNN ALGORITHMS WITH TEST SAMPLES IN THE FOUR BENCHMARK DATA SETS

Algorithm	Precision	Recall	F1-score
SpikeProp [11]	0.75	0.77	0.73
SPDO	0.82	0.78	0.78
SPDC	0.84	0.81	0.80
P-SPDO	0.75	0.69	0.70
P-SPDC	0.79	0.76	0.75
SPADO	0.85	0.86	0.83
SPADC	0.86	0.84	0.83
SPGAD	0.86	0.86	0.85
CNO-SpikeProp	0.79	0.80	0.76
CNO-SPDO	0.89	0.82	0.84
CNO-SPDC	0.91	0.84	0.86
CNO-SPADO	0.86	0.89	0.88
CNO-SPADC	0.87	0.90	0.88
CNO-SPGAD	0.93	0.89	0.91

Portfolio Optimization

- As a cornerstone of modern finance involved with the work of at least six Nobel Laureates, portfolio selection or optimization is of great interest for financial investments from both academic and economic points of view.
- A major breakthrough of modern portfolio theory was highlighted by Nobel Laureate H.
 M. Markowitz in his mean-variance framework.

Mean-Variance Framework

A classical mean-variance portfolio optimization problem can be formulated as a bi-objective optimization problem [1]:

$$\min_{y} y^{T} V y, -\mu^{T} y$$
s.t. $e^{T} y = 1,$
 $0 \le y \le e,$
(1)

where $y = (y_1, y_2, ..., y_n)^T$ is the proportion of wealth invested to the stocks, V is the covariance matrix, $\mu = (\mu_1, \mu_2, ..., \mu_n)^T$ is the vector of mean returns of n stocks, e is the vector of ones. The terms $\mu^T y$ and $y^T V y$ measure the expected return and risk of a portfolio, respectively.

Mean-CVaR Formulation

$$\min_{\substack{y,\alpha,\rho}} \alpha + \frac{1}{N(1-\theta)} \sum_{j=1}^{N} \rho_j$$

$$\min_{\substack{y,\alpha,\rho}} -\mu^T y,$$

s.t. $\rho_j \ge y^T \xi_j - \alpha, \ j = 1, \dots, N$
 $e^T y = 1,$
 $0 \le y \le e.$

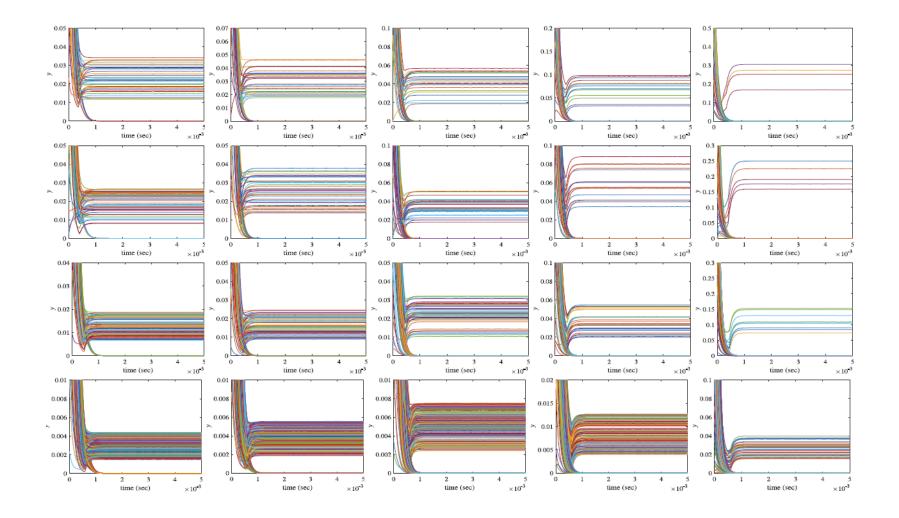
Cardinality-constrained Mean-CVaR Formulation

$$\min_{\substack{y,z,\alpha,\rho}} \alpha + \frac{1}{N(1-\theta)} \sum_{j=1}^{N} \rho_j$$

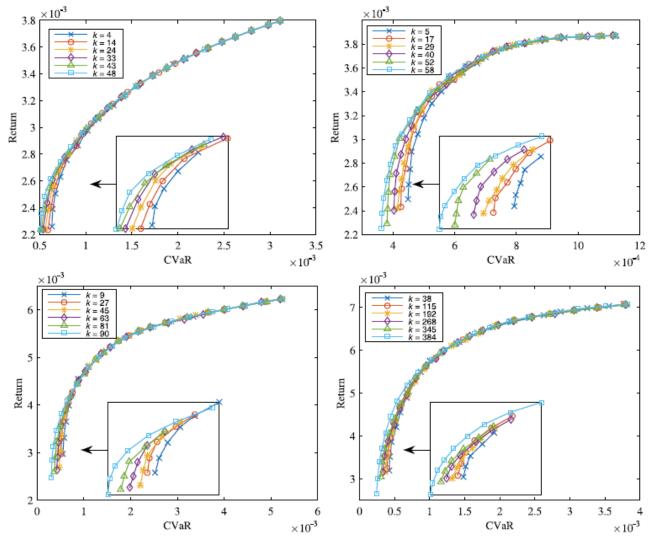
$$\min_{\substack{y,z,\alpha,\rho}} -\mu^T y$$

s.t. $\xi_j^T y - \alpha \le \rho_j, \ j = 1, \dots, N$
 $e^T y = 1,$
 $e^T z \le k,$
 $0 \le y \le e \circ z,$
 $z \in \{0,1\}^n,$

Neuronal Convergence



Pareto Fronts



TU-Wien, Vienna, Austria; June 10, 2024

Comparative Results

Statistics of experimental results of six cardinality-constrained bi-objective portfolio optimization methods CNO-CBPS, MINLP, CPLEX, NSGAII, PBIEDE, and HMA, where $\lambda = 0.5$, best results are boldfaced, and 'NA' denotes the baseline could not obtain a solution within the time limit.

Datasets	п	k	MINLP solver		CPLEX		NSGAII		PBIEDE		HMA		CNO-CBPS	
			time (s)	f_{λ}	time (s)	f_{λ}	time (s)	f_{λ}	time (s)	f_{λ}	time (s)	f_{λ}	time (s)	f_{λ}
		15	2.46	0.5811	4.31	0.5811	5.36	0.5921	11.30	0.5910	23.96	0.5822	8.98	0.5811
HDAX	48	10	4.99	0.5932	4.75	0.5932	3.78	0.6011	4.51	0.5986	21.70	0.5956	6.37	0.5932
		5	21.88	0.6186	5.38	0.6186	2.19	0.6230	3.21	0.6201	19.93	0.6234	3.71	0.6186
FTSE		15	9.22	0.3754	6.26	0.3754	8.77	0.3825	16.26	0.3802	30.13	0.3779	17.02	0.3770
	58	10	14.14	0.3816	7.63	0.3816	5.26	0.3930	10.36	0.3897	27.79	0.3898	8.69	0.3816
		5	89.46	0.3962	9.71	0.3962	4.10	0.4098	8.49	0.3991	26.99	0.3966	6.53	0.3962
HSI		15	82,33	1.6842	7.80	1.6842	9.39	1.7052	20.61	1.6944	45.05	1.6861	14.13	1.6856
	90	10	189.19	1.7120	11.12	1.7120	8.42	1.7749	14.12	1.7321	39.87	1.7163	12.01	1.7120
		5	310.11	1.7486	27.83	1.7486	5.53	1.7853	8.99	1.7657	34.92	1.7646	7.81	1.7486
SP500		15	3600	NA	2408	1.2502	439.87	1.3021	779.4	1,2841	1113,56	1.2751	623.80	1.2502
	384	10	3600	NA	3600	NA	248.41	1.3278	361.32	1.3030	1077.66	1.2945	458.65	1.2896
		5	3600	NA	3600	NA	148.72	1.3348	210.14	1,3228	932,17	1,3158	245.36	1.3107

M.F. Leung and **J. Wang**, "<u>Cardinality-constrained portfolio selection based on collaborative</u> neurodynamic optimization," *Neural Networks*, vol. 145, pp. 68-79, 2022.

Annualized Returns

	Datasets	Market index	Solution sparsity								
			0%	$\sim 10\%$	~30%	~50%	~70%	~90%			
In-sample 2000–2011	HDAX FTSE HSI SP500	5.66% 5.29% 6.77% 5.31%	10.18-15.42% 11.22-15.90% 13.68-21.02% 11.98-17.88%	8.70–15.42% 10.16–15.90% 12.56–21.02% 10.28–17.88%	8.18-15.42% 9.01-15.90% 12.15-21.02% 10.02-17.88%	7.39–15.42% 7.95–15.90% 11.80–21.02% 9.39–17.88%	7.11-15.42% 7.35-15.90% 11.36-21.02% 8.68-17.88%	6.97-15.42% 6.99-15.90% 10.09-21.02% 8.25-17.88%			
Out-of- sample 2012-2017	HDAX FTSE HSI SP500	6.64% 4.43% 6.18% 5.93%	10.32-14.03% 11.51-15.04% 12.05-18.95% 13.57-26.84%	9.91-14.37% 11.17-14.72% 11.71-18.98% 13.38-27.41%	9.37-14.32% 10.61-15.02% 11.47-18.90% 12.47-26.20%	8.61–14.59% 9.93–14.93% 11.30–18.83% 12.08–26.54%	7.50-14.87% 9.72-14.88% 11.16-18.73% 11.30-26.92%	6.60-14.11% 9.33-15.40% 10.28-18.92% 11.25-25.32%			

Ranges of annualized returns of four resulting portfolios with various values of cardinality bound k.

M.F. Leung and **J. Wang**, "<u>Cardinality-constrained portfolio selection based on collaborative</u> <u>neurodynamic optimization</u>," *Neural Networks*, vol. 145, pp. 68-79, 2022.

Problem Reformulation

Maximizing conditional Sharpe ratio subject to self-financing and cardinality constraints.

$$\max_{y} \frac{\mu^{T}y - r_{f}}{\text{CVaR}_{\theta}(y)}$$

s.t. $e^{T}y = 1$,
 $\|y\|_{0} \leq k$,
 $y \geq 0$.

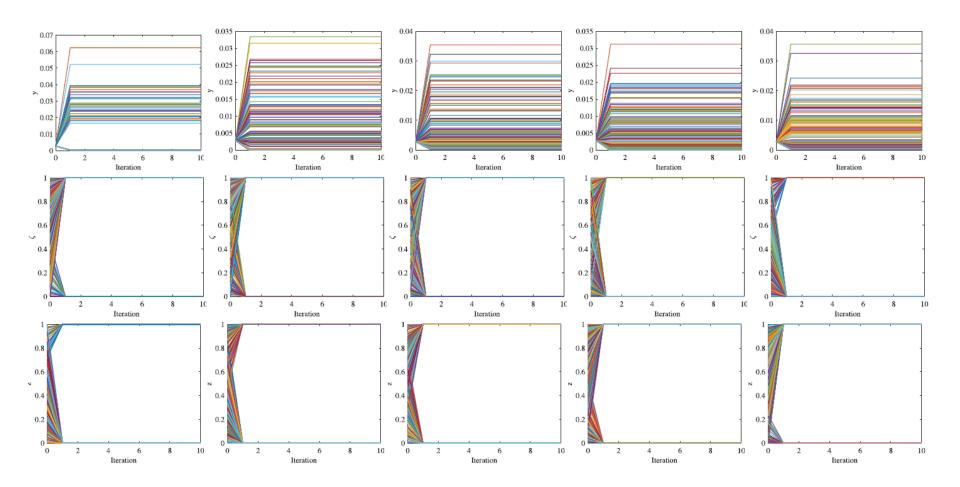
M. Leung, **J. Wang**, and H. Che, "<u>Cardinality-constrained portfolio selection via two-</u> <u>timescale duplex neurodynamic optimization</u>," *Neural Networks*, vol. 153, pp. 399-410, 2022.

Problem Reformulation (cont'd)

$$\begin{split} \min_{\gamma,\rho,\sigma,y,z} & \frac{\gamma^2}{2} \Big(\rho + \frac{1}{N(1-\theta)} \sum_{J=1}^N \sigma_J \Big)^2 - \gamma(\mu^T y - r_f) \\ \text{s.t. } \sigma_i \geq -\xi_i^T y - \rho, \ \sigma_i \geq 0, \ i = 1, 2, \dots, N; \\ e^T y = 1; \\ e^T z \leq k; \\ 0 \leq y \leq z; \\ z \in \{0, 1\}^n; \end{split}$$

where $z \in \{0, 1\}^n$, $e^T z < k$ is the cardinality constraint.

Convergence Behaviors

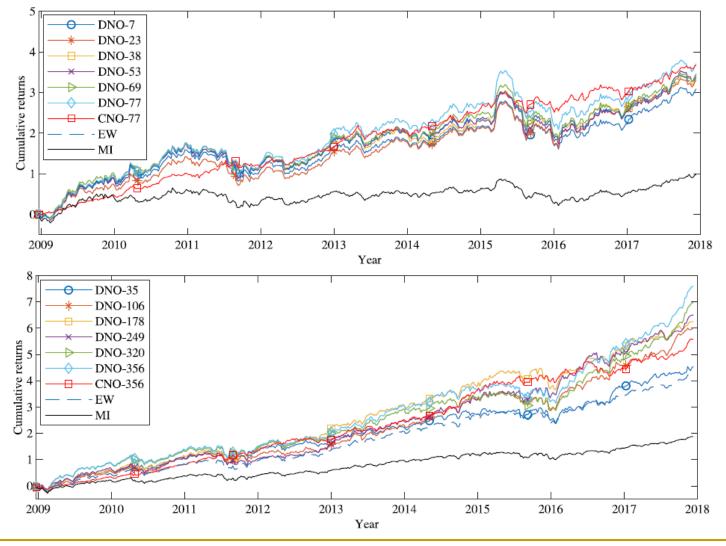


Sharpe Ratio, Conditional Sharpe Ratio, and Annualized Returns

Dataset Conditional Sharpe ratio Annualized return (%) n k Sharpe ratio DNO CNO EW MI DNO CNO EW MI DNO CNO EW MI 4 0.5486 0.5231 0.2475 0.2349 10.4758 7.9459 0.5975 0.5689 0.2863 14 0.2487 11.2641 11.1892 0.6687 0.2963 0.2532 0.6357 12.7997 12.1576 24 0.6873 HDAX 49 0.6726 0.2734 0.3447 12.9857 12.2463 0.6848 0.2688 13.4195 34 0.7271 0.3401 13.8972 44 0.7574 0.7119 0.3658 0.2899 14.5806 13.6594 49 0.7582 0.7565 0.3836 0.3129 15.1259 13.8340 5 0.4844 0.4349 0.2053 0.1936 7.7156 7.9548 8.2565 16 0.6338 0.6187 0.2963 0.2311 9.8699 28 0.6600 0.6302 0.3051 0.2412 10.2688 8.4036 FTSE 56 0.8303 0.3659 12.9811 5.9705 0.4364 0.2374 39 0.6755 0.6554 0.3159 0.2631 10.7203 9.1148 50 0.7214 0.7201 0.3562 0.2824 11.1810 12.4485 56 0.8756 0.8542 0.3965 0.3554 15.8881 15.6841 0.8645 0.4086 16.9073 7 0.9315 0.4353 16.9461 0.4420 23 0.9411 0.8790 0.4185 17.6416 17.1799 0.8941 0.4487 0.4214 17.8137 17,4809 38 0.9551 0.4782 HSCI 77 0.9791 0.3459 0.1710 17.8610 7.9394 0.9074 0.4267 17.7833 53 0.9640 0.4521 18.0446 69 1.9881 0.9186 0.4566 0.4332 18.0600 18.0823 77 1.0147 0.9369 0.4635 0.4471 18.7928 18.6832 19.7990 35 1.1145 0.5019 0.4147 20.9448 1.1314 20.3223 106 1.1834 1.1440 0.5633 0.4417 24.1746 178 1.2083 1.1748 0.5852 0.5189 24.6381 20.9244 SP500 356 1.15990.8255 0.4120 0.2801 20.3834 12.4253 1.1904 0.6197 21.5870 249 1.2141 0.5435 25.1157 0.5679 25.9424 22.3755 320 1.2187 1.2126 0.6362 356 1.2231 1.2175 0.6539 0.6488 26.9975 23.2873

Resulting annualized Sharpe ratio, conditional Sharpe ratio and returns based on half-and-half partitioned datasets.

Cumulative Returns



Distributed Portfolio Selection

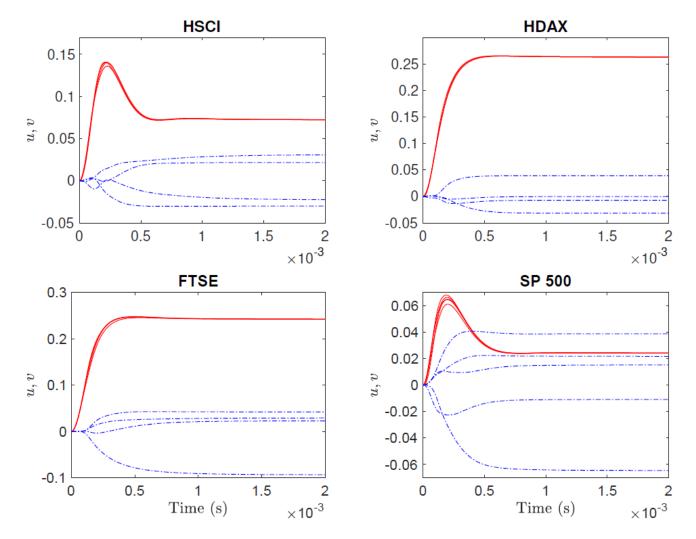
- As a paradigm of decentralized decision making in the finance industry, decentralized portfolio optimization is advantageous in terms of preferential and geographical diversification.
- In distributed portfolio optimization, more specialized investment decisions could be made by leveraging the specific expertise of fund managers toward higher returns and lower risks.

Coupled Projection Neural Networks

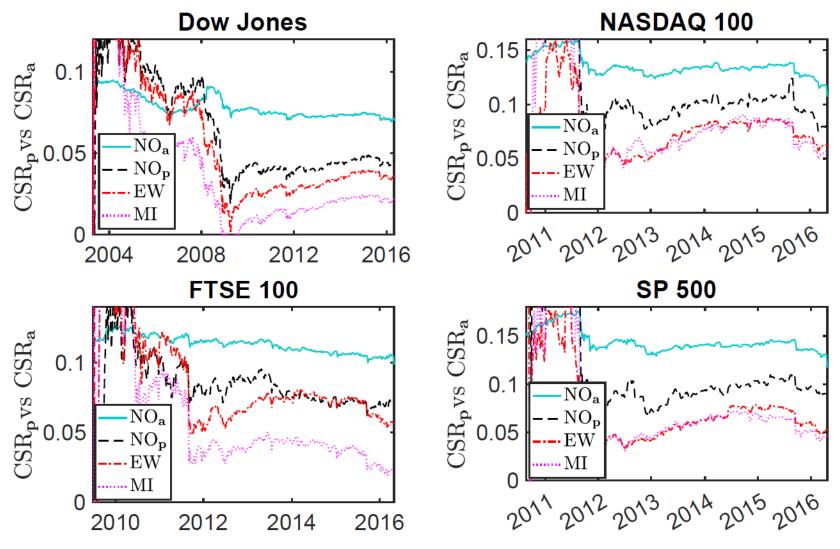
$$\begin{aligned} \epsilon \frac{dx_i}{dt} &= -x_i + g(x_i - \nabla_{x_i} f_i(x_i, \rho) - e_{n_i} u_i), \\ \epsilon \frac{d\rho}{dt} &= -\rho + g(\rho - \nabla_{\rho} f_i(x_i, \rho)), \\ \epsilon \frac{du_i}{dt} &= e_{n_i}^T x_i - b_i - \sum_{j \in \mathcal{N}_i} (u_i - u_j + v_i - v_j), \\ \epsilon \frac{dv_i}{dt} &= \sum_{j \in \mathcal{N}_i} (u_i - u_j), \end{aligned}$$

J. Wang and X. Gan, "<u>Neurodynamics-driven portfolio optimization with targeted</u> performance criteria," *Neural Networks*, vol. 157, pp. 404-421, 2023.

Convergence/Consensus Behaviors



Ex-ante vs. Ex-post Performances



TU-Wien, Vienna, Austria; June 10, 2024

Performance Comparisons

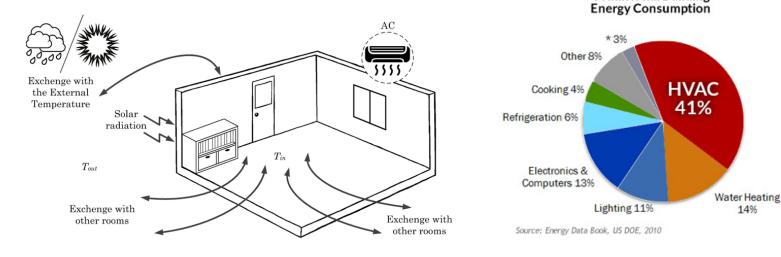
Sortin	no Ratio (S	SoR_{p})	Cndtnl. Sl	narpe Rat	io (CSR_p)
NO	EW	MI	NO	\mathbf{EW}	MI
1.7914	1.3315	1.4357	0.3732	0.4164	0.4629
4.6473	1.5292	1.6859	0.9923	0.3291	0.3287
3.2970	2.4649	2.0759	0.7442	0.5963	0.6525
2.4611	3.5893	3.3459	0.3446	0.9860	1.0737
<u>1.5529</u>	1.5910	0.7165	0.4685	0.3459	0.1710
1.2181	0.9863	0.9612	0.3898	0.2734	0.3447
1.3493	1.2127	0.6182	0.3975	0.3659	0.2374
2.0778	1.8232	1.2355	0.6653	0.4120	0.2801

Performance Comparisons (cont'd)

BCST-Library	Dataset	NO	EW	MI	M-V	L-SSD	LR-ASSD	RMZ-SSD	PK-SSD	CZeSD
	DJIA			0.3704						
		0.7568	<u>0.6100</u>		0.5635	0.4596	0.5297	0.3261	0.6473	0.4895
Sharpe	NASDAQ100	1.2844	1.1131	0.9191	1.0528	1.3800	1.1686	1.1613	<u>1.2323</u>	1.0079
Ratio	FTSE100	1.1646	0.9152	0.3810	1.2832	1.2771	0.7767	1.4363	1.1980	0.7482
(SR_p)	S&P500	1.3219	0.8541	0.7672	0.8440	0.7966	0.8633	1.0451	0.8548	0.9550
	DJIA	1.0516	0.9200	0.7247	0.8453	0.6730	0.8070	0.4571	0.9415	0.7247
Sortino	NASDAQ100	1.9902	1.6369	1.4832	1.5542	2.1006	1.7874	1.7283	1.9192	1.4832
Ratio	FTSE100	1.7634	1.3124	1.0723	1.9765	1.9277	1.1118	2.2624	1.8296	1.0723
(SoR_p)	S&P500	2.0476	1.2543	1.4024	1.2017	1.1165	1.3083	1.5475	1.2917	1.4024
	DJIA	2.4784	1.9987	1.1252	1.7624	1.4112	1.7530	0.9501	1.9386	1.5490
Omega	NASDAQ100	4.6692	4.0148	3.0966	3.4222	4.7902	3.9412	3.9563	4.3455	3.4389
Ratio	FTSE100	3.6241	2.8986	1.1084	4.3032	4.4438	2.4450	5.1034	4.2804	2.3341
(OR_p)	S&P500	4.9801	3.0322	2.6243	2.6638	2.5327	2.8671	3.3727	2.7897	3.3734
Conditional	DJIA	0.3264	0.2601	0.1578	0.2440	0.1896	0.2211	0.1325	0.2673	0.2044
Sharpe	NASDAQ100	0.5763	0.4462	0.4037	0.4252	0.5835	0.4781	0.4560	0.5274	0.3982
Ratio	FTSE100	0.5157	0.4114	0.1662	0.5563	0.5582	0.2949	0.6185	0.5325	0.3346
(CSR_p)	S&P500	0.6440	0.3738	0.3334	0.3403	0.3134	0.3790	0.4247	0.3610	0.3835
Entropic	DJIA	0.2190	0.2191	0.1787	0.1703	0.1477	0.1965	0.0845	0.1953	0.1787
Sharpe	NASDAQ100	0.6177	0.3384	0.3319	0.2232	0.2635	0.2346	0.3357	0.3948	0.3319
Ratio	FTSE100	0.5187	0.2976	0.2370	0.2581	0.2065	0.1901	0.3937	0.2796	0.2370
(ESR_p)	S&P500	0.6071	0.2237	0.2806	0.1353	0.1600	0.1905	0.2167	0.2309	0.2806

HVAC operation optimization

- Heating, ventilation, and air conditioning (HVAC) systems
 - Vital facilities for regulating temperature and humidity in the ambient environments of buildings
 - □ To meet thermal comfort and air quality requirements
- HVAC systems consume a substantial amount (~40%) of energy in commercial buildings

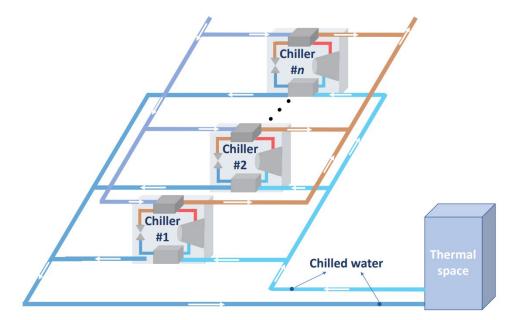


HVAC operation optimization (cont'd)

 In the global urbanization process, HVAC systems will take up an increasing portion of energy consumption

- It is crucial to optimize HVAC operations
 - Increase energy efficiency
 - □ Reduce carbon dioxide emissions

Optimal chiller loading



Chillers: > 60% of energy consumption
 Optimize chiller outputs
 To meet demands
 With minimal energy consumption

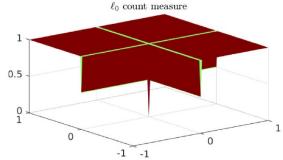
Optimal chiller loading (cont'd)

A **power consumption** function of chillers: for chiller *i* (*i* = 1, 2, ..., *n*), $P_i(PLR_i) = a_i PLR_i^3 + b_i PLR_i^2 + c_i PLR_i + d_i$

Cardinality constraint: to confine the number of chillers with ON status $||PLR||_0 \le k$

$$\sum_{i=1}^{n} y_i \le k, \in \{0, 1\}$$

, n.



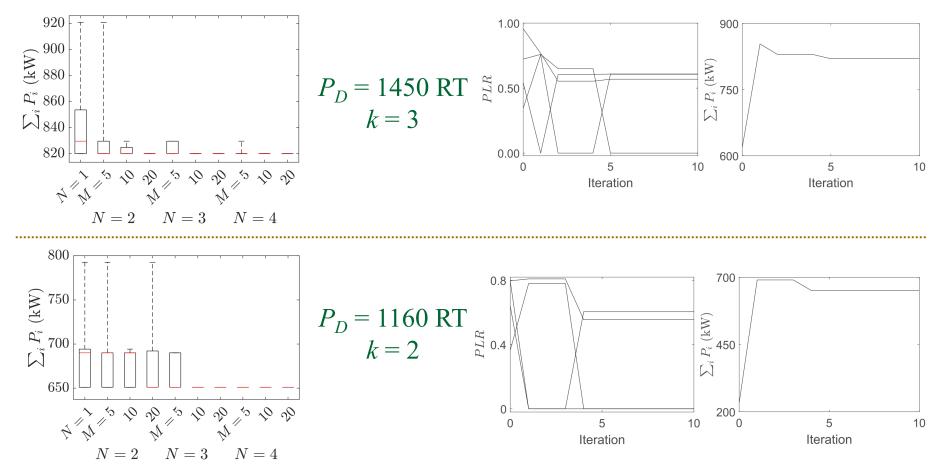
$$\min_{PLR,y} \sum_{i=1}^{n} P_i(PLR_i)$$

subject to
$$\sum_{i=1}^{n} \overline{P}_i PLR_i - P_D = 0,$$
$$\underline{PLR}_i y_i \le PLR_i \le \overline{PLR}_i y_i,$$
$$\sum_{i=1}^{n} y_i \le k, \ y_i(y_i - 1) = 0 \quad \forall i = 1, \dots$$

Power consumption Supply-demand constraint Capacity constraints Cardinality constraint Integer constraints

Optimal chiller loading (cont'd)

Convergence Behaviors



Optimal chiller loading (cont'd)

A four-chiller system (a hotel)

M d d		P _D =261	0 RT			$P_D=232$	20 RT			$P_D = 200$	30 RT	
Method	best	worst	mean	SD	best	worst	mean	SD	best	worst	mean	SD
GAMS [11]	1857.30	-	-	-	1455.66	-	-	-	1178.14	-	-	-
GA [10]	1862.18	-	-	-	1457.23	-	-	-	1183.80	-	-	-
LGM [10]	1857.30	1864.17	-	-	1455.66	1461.05	-	-	1178.14	1182.50	-	-
PSO [13]	1857.30	1857.45	1857.43	0.04	1455.66	1522.42	1462.34	20.03	1178.14	1178.14	1178.14	0.00
DE [14]	1857.30	1858.57	1857.43	0.40	1455.66	1455.66	1455.66	0.00	1178.14	1178.14	1178.14	0.00
DCSA [16]	1857.30	1857.40	1857.32	0.02	1455.67	1458.48	1455.81	0.53	1178.14	1199.50	1181.07	4.80
CNO-CL	1857.30	1857.30	1857.30	0.00	1455.66	1455.66	1455.66	0.00	1178.14	1178.14	1178.14	0.00
		$P_D = 174$	0 RT			$P_D = 145$	50 RT		$P_D = 110$	50 RT		
Method	best	worst	mean	SD	best	worst	mean	SD	best	worst	mean	SD
GAMS [11]	998.53	-	-	-	820.07	-	-	-	651.07	-	-	-
GA [10]	1001.62	-	-	-	907.72	-	-	-	856.30	-	-	-
LGM [10]	998.53	1002.22	-	-	904.62	907.97	-	-	849.99	853.13	-	-
PSO [13]	998.53	1013.43	1005.36	5.71	820.07	847.53	826.52	10.88	651.07	691.19	667.12	19.65
DE [14]	998.53	1009.20	1000.21	3.66	820.07	821.28	820.19	0.38	651.07	655.63	651.53	1.44
DCSA [16]	1008.24*	1074.55*	1038.13*	25.72	825.72*	897.06*	838.05*	17.43	652.16*	794.25*	713.17*	44.02
CNO-CL	998.53	998.53	998.53	0.00	820.07	820.07	820.07	0.00	651.07	651.07	651.07	0.00

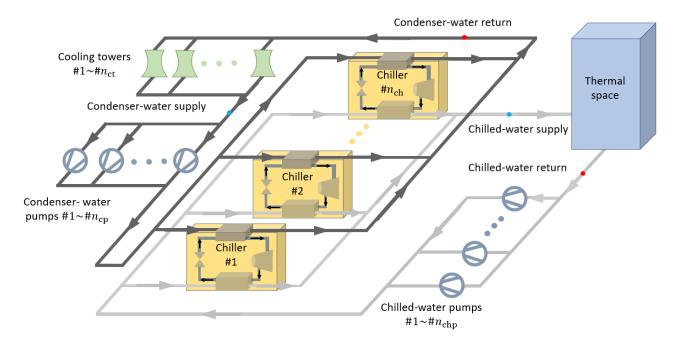
up to 23.85% of savings

A 20-chiller system \rightarrow up to 21.36% of savings

		P _D =13050	RT			P _D =11600	RT			P _D =10150) RT	
Method	best / worst	mean	SD	average time	best / worst	mean	SD	average time	best / worst	mean	SD	average time
GA [12]	9293.78 / 9401.31	9326.04	19.29	7.50	7293.64 / 7361.76	7322.59	15.50	7.51	5910.94 / 6024.68	5947.46	22.22	7.40
PSO [12]	9307.41 / 10650.73	9734.65	351.31	4.68	7942.34 / 10992.43	9149.29	658.79	4.76	6269.72 / 7563.12	6799.53	220.73	4.74
DE [14]	10188.39 / 11267.59	10746.82	219.46	7.09	7917.54 / 9502.17	8921.39	307.28	7.11	6956.12 / 8048.28	7458.87	306.82	7.05
IFA [15]	9286.71 / 9287.49	9286.98	0.17	134.02	7278.37 / 7278.58	7278.45	0.04	129.78	5890.74 / 5965.45	5896.54	19.51	129.47
CNO-CL	9286.49 / 9286.49	9286.49	0.00	0.25	7278.32 / 7278.32	7278.32	0.00	4.31	5890.69 / 5890.69	5890.69	0.00	4.36
Maderal		$P_D = 8700 \text{ F}$	RΤ			P _D =7250			P _D =5800	RT		
Method	best / worst	mean	SD	average time	best / worst	mean	SD	average time	best / worst	mean	SD	average time
GA [12]	4975.30 / 5079.74	5019.05	23.24	7.39	4157.11 / 4481.54	4258.88	58.81	7.69	3322.83 / 3563.15	3437.40	57.32	7.65
PSO [12]	5080.86 / 5697.55	5407.83	126.59	4.87	4125.79 / 4699.08	4348.79	117.64	4.79	3245.64 / 3705.91	3508.28	105.54	4.78
DE [14]	5679.43 / 6747.46	6285.46	256.47	7.03	4423.34 / 5773.08	5164.85	272.14	7.02	3634.22 / 4624.62	4015.83	189.90	7.00
IFA [15]	4942.76 / 5005.12	4970.55	17.55	129.04	4103.48 / 4327.59	4181.83	51.55	130.60	3267.88 / 3503.05	3351.42	48.33	130.11
CNO-CL	4942.64 / 4942.64	4942.64	0.00	21.46	4074.55 / 4080.84	4076.00	2.66	62.02	3225.91 / 3233.19	3226.63	2.20	52.56

Z. Chen, J. Wang, and Q.L. Han, "Optimal chiller loading based on collaborative neurodynamic optimization," *IEEE Transactions on Industrial Informatics*, vol. 19, pp. 3057-3067, 2023.

Chiller Plant Operation Planning



• Determine the output of each device e.g., on/off status, mass flow rates of water and air....

Challenges:

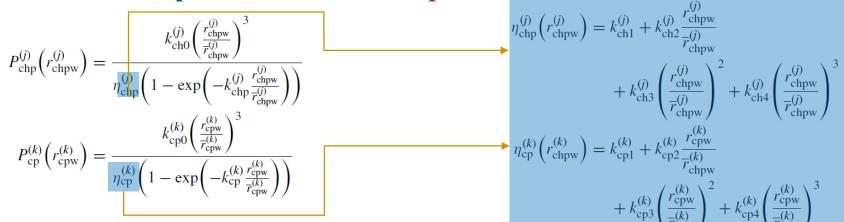
- More devices: complex equations
- More coupling constraints for the conservation of energy

Power consumption function: Chillers

 $P_{\rm ch}^{(i)}\left(T_{\rm chws}, T_{\rm cws}, Q_{\rm ch}^{(i)}\right) = \overline{P}_{\rm ch}^{(i)} \Phi_c^{(i)} \Phi_e^{(i)} \Phi_{\rm ep}^{(i)}$

$$\begin{split} \Phi_{c}^{(i)}(T_{\rm chws},T_{\rm cws}) &= a_{1}^{(i)} + a_{2}^{(i)}T_{\rm chws} + a_{3}^{(i)}T_{\rm chws}^{2} + a_{4}^{(i)}T_{\rm cws} \\ &+ a_{5}^{(i)}T_{\rm cws}^{2} + a_{6}^{(i)}T_{\rm chws}T_{\rm cws} \\ \Phi_{e}^{(i)}(T_{\rm chws},T_{\rm cws}) &= b_{1}^{(i)} + b_{2}^{(i)}T_{\rm chws} + b_{3}^{(i)}T_{\rm chws}^{2} + b_{4}^{(i)}T_{\rm cws} \\ &+ b_{5}^{(i)}T_{\rm cws}^{2} + b_{6}^{(i)}T_{\rm chws}T_{\rm cws} \\ \Phi_{ep}^{(i)}\left(\Phi_{c}^{(i)},Q_{\rm ch}^{(i)}\right) &= d_{1}^{(i)}H\left(Q_{\rm ch}^{(i)}\right) + d_{2}^{(i)}\frac{Q_{\rm ch}^{(i)}}{\Phi_{c}^{(i)}\overline{Q}_{\rm ch}^{(i)}} + d_{3}^{(i)}\left(\frac{Q_{\rm ch}^{(i)}}{\Phi_{c}^{(i)}\overline{Q}_{\rm ch}^{(i)}}\right)^{2} \end{split}$$

Power consumption function: Pumps



Power consumption function: Cooling Towers

$$P_{\rm ct}^{(l)}\left(r_a^{(l)}\right) = \overline{P}_{\rm ct}^{(l)}\left(\frac{r_a^{(l)}}{\overline{r}_a^{(l)}}\right)^3$$

Supply-demand constraints

$$C_p \sum_{j=1}^{n_{\rm chp}} r_{\rm chpw}^{(j)} (T_{\rm chwr} - T_{\rm chws}) = P_D \quad P_D = \sum_{i=1}^{n_{\rm ch}} Q_{\rm ch}^{(i)}.$$

Constraints for the conservation of energy

$$P_D + \sum_{i=1}^{n_{\rm ch}} P_{\rm ch}^{(i)} = C_p \sum_{i=1}^{n_{\rm cp}} r_{\rm cpw}^{(k)} (T_{\rm cwr} - T_{\rm cws})$$

$$P_D + \sum_{i=1}^{n_{\rm ch}} P_{\rm ch}^{(i)} = \varepsilon_a \sum_{l=1}^{n_{\rm ct}} r_a^{(l)} (h_{\rm sw} - h_{\rm in}) \ \varepsilon_a (T_{\rm cws}, T_{\rm cwr}) = \frac{T_{\rm cwr} - T_{\rm cws}}{T_{\rm cwr} - T_{\rm wb}}$$

$$h_{\rm sw}(T_{\rm cwr}) = c_{\rm t0} + c_{\rm t1} T_{\rm cwr} + c_{\rm t2} T_{\rm cwr}^2 + c_{\rm t3} T_{\rm cwr}^3$$

Capacity constraints

$$y_{ch} \circ \underline{Q}_{ch} \leq Q_{ch} \leq y_{ch} \circ \overline{Q}_{ch}$$

$$y_{chp} \circ \underline{r}_{chpw} \leq r_{chpw} \leq y_{chp} \circ \overline{r}_{chpw}$$

$$y_{cp} \circ \underline{r}_{cpw} \leq r_{cpw} \leq y_{cp} \circ \overline{r}_{cpw}$$

$$y_{ct} \circ \underline{r}_{a} \leq r_{a} \leq y_{ct} \circ \overline{r}_{a}$$

$$\underline{T}_{chws} \leq T_{chws} \leq \overline{T}_{chws}, \ \underline{T}_{cws} \leq T_{cws} \leq \overline{T}_{cws}$$

$$\underline{T}_{chwr} \leq T_{chwr} \leq \overline{T}_{chwr}, \ \underline{T}_{cwr} \leq T_{cwr} \leq \overline{T}_{cwr}$$

Quadratic equations

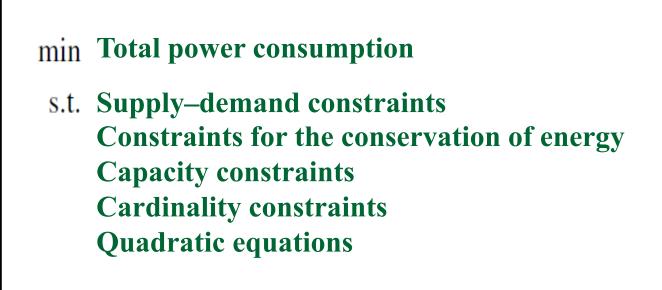
$$y_{ch} \circ (y_{ch} - e) = 0, \quad y_{chp} \circ (y_{chp} - e) = 0$$
$$y_{cp} \circ (y_{cp} - e) = 0, \quad y_{ct} \circ (y_{ct} - e) = 0.$$

Cardinality constraints

$$e^{\mathrm{T}}y_{\mathrm{ch}} \leq k_{\mathrm{ch}}, \ e^{\mathrm{T}}y_{\mathrm{chp}} \leq k_{\mathrm{chp}},$$

 $e^{\mathrm{T}}y_{\mathrm{cp}} \leq k_{\mathrm{cp}}, \ e^{\mathrm{T}}y_{\mathrm{ct}} \leq k_{\mathrm{ct}}$

Problem formulation for chiller plant operation planning



A Chiller Plant With Homogeneous Devices: Save up to 55.69% of power consumption

		F	$P_D = 3033 \text{ kW}$			$P_D = 6065 \text{ kW}$						
Method	$\sum_{i=1}^{8} P_{\rm ch}^{(i)}$	$\sum_{j=1}^{8} P_{\rm chp}^{(j)}$	$\sum_{k=1}^{8} P_{\rm cp}^{(k)}$	$\sum_{l=1}^{8} P_{\rm ct}^{(l)}$	P_{total}	$\sum_{i=1}^{8} P_{\rm ch}^{(i)}$	$\sum_{j=1}^{8} P_{\rm chp}^{(j)}$	$\sum_{k=1}^{8} P_{\rm cp}^{(k)}$	$\sum_{l=1}^{8} P_{\rm ct}^{(l)}$	P_{total}		
DE [17]		Sc	lution infeasible			So	lution infeasible					
PSO-GA [11]	626.58	118.42	88.68	34.90	868.57+	1096.61	38.21	143.42	31.96	1310.19^+		
GA [8]	790.41	93.62	80.79	36.82	1001.65^{+}	1077.35	143.30	26.42	21.16	1268.23^+		
DC [9]	468.74	16.65	5.81	20.00	511.21	832.55	28.46	8.42	3.88	873.31		
CNO-CPOP	428.05	12.66	2.95	0.15	443.80	828.84	25.31	5.84	1.17	861.16		
		F	$P_D = 9098 \text{ kW}$			$P_D = 12131 \text{ kW}$						
Method	$\sum_{i=1}^{8} P_{\mathrm{ch}}^{(i)}$	$\sum_{j=1}^{8} P_{\rm chp}^{(j)}$	$\sum_{k=1}^{8} P_{\rm cp}^{(k)}$	$\sum_{l=1}^{8} P_{\mathrm{ct}}^{(l)}$	P_{total}	$\sum_{i=1}^{8} P_{\mathrm{ch}}^{(i)}$	$\sum_{j=1}^{8} P_{\rm chp}^{(j)}$	$\sum_{k=1}^{8} P_{\mathrm{cp}}^{(k)}$	$\sum_{l=1}^{8} P_{\rm ct}^{(l)}$	P_{total}		
DE [17]		Sc	lution infeasible			Solution infeasible						
PSO-GA [11]	1482.01	157.07	50.30	27.44	1716.82^+	1861.84	302.16	73.75	40.58	2278.34^{+}		
GA [8]	1416.97	105.61	55.22	30.18	1607.98^+	1814.10	158.12	57.21	21.77	2051.19^+		
DC [9]	1253.41	56.35	10.37	28.09	1348.22	1701.94	105.57	21.34	9.43	1838.29		
CNO-CPOP	1256.82	53.07	10.38	3.95	1324.22	1701.94	105.57	21.34	9.43	1838.29		

A Chiller Plant With Heterogeneous Devices: Save up to 58.30% of power consumption

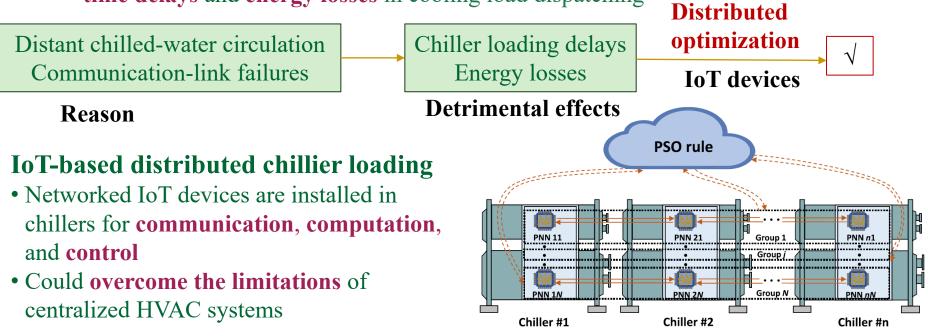
		P	$P_D = 1312 \text{ kW}$			$P_D = 2625 \text{ kW}$						
Method	$\sum_{i=1}^4 P_{ m ch}^{(i)}$	$\sum_{j=1}^4 P_{\rm chp}^{(j)}$	$\sum_{k=1}^4 P_{ ext{cp}}^{(k)}$	$\sum_{l=1}^{4} P_{\rm ct}^{(l)}$	P_{total}	$\sum_{i=1}^{4} P_{\rm ch}^{(i)}$	$\sum_{j=1}^{4} P_{\rm chp}^{(j)}$	$\sum_{k=1}^4 P_{ ext{cp}}^{(k)}$	$\sum_{l=1}^4 P_{\mathrm{ct}}^{(l)}$	P_{total}		
DE [17]		So	lution infeasible				Sol	lution infeasible				
PSO-GA [11]	188.53	28.19	41.85	19.28	277.85^{+}	354.52	56.79	29.36	20.00	460.67+		
GA [8]	255.32	22.93	20.40	10.21	308.87^{+}	350.38	43.94	21.99	14.17	430.48^{+}		
CNO-CPOP	122.41	4.80	1.55	0.04	128.81	274.72	11.23	2.80	0.64	289.39		
		P	$P_D = 3937 \text{ kW}$			$P_D = 5250 \text{ kW}$						
Method	$\sum_{i=1}^4 P_{ m ch}^{(i)}$	$\sum_{j=1}^4 P_{\rm chp}^{(j)}$	$\sum_{k=1}^4 P_{ ext{cp}}^{(k)}$	$\sum_{l=1}^4 P_{ ext{ct}}^{(l)}$	P_{total}	$\sum_{i=1}^4 P_{\mathrm{ch}}^{(i)}$	$\sum_{j=1}^4 P_{\rm chp}^{(j)}$	$\sum_{k=1}^4 P_{ ext{cp}}^{(k)}$	$\sum_{l=1}^4 P_{ ext{ct}}^{(l)}$	P_{total}		
DE [17]		So	lution infeasible				Sol	lution infeasible				
PSO-GA [11]	474.29	73.15	35.64	25.83	608.92^{+}	691.37	81.34	57.82	29.72	860.25+		
GA [8]	491.95	50.31	45.60	16.59	604.44^{+}	671.80	50.98	33.30	21.74	777.82^{+}		
CNO-CPOP	432.23	30.26	5.01	1.15	468.64	599.78	51.08	8.31	2.76	661.92		

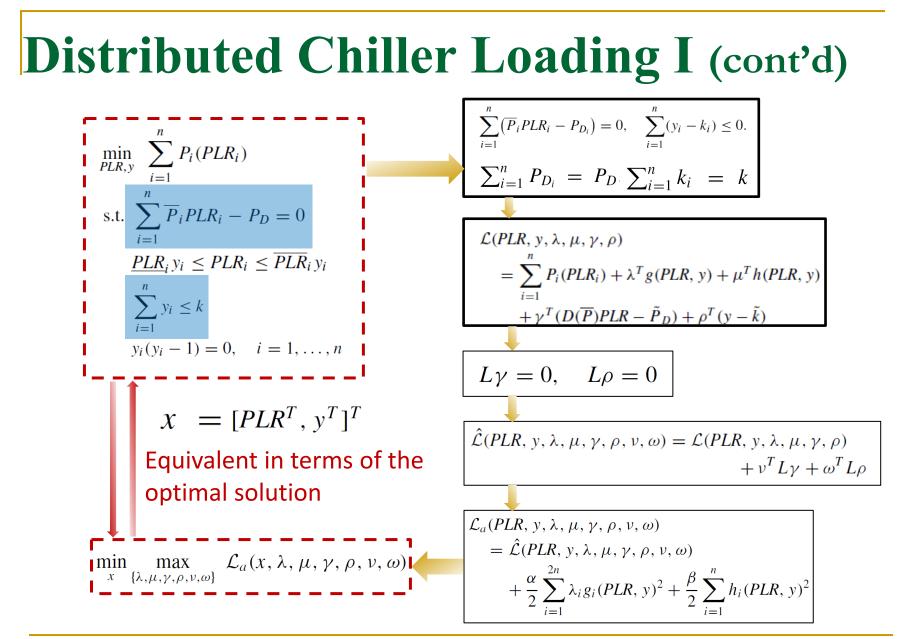
Z. Chen, J. Wang, and Q.L. Han, "Chiller plant operation planning via collaborative neurodynamic optimization," *IEEE Transactions on Systems, Man and Cybernetics: Systems*, vol. 53, pp. 4623-4635, 2023.

Distributed Chiller Loading

Motivations

- Most existing chiller systems **operate in centralized locations**
- There are several disadvantages in centralized chiller systems
 - Centralized information processing **entails high reliability of communication** for effective chiller loading
 - Centrally located chillers with long circulation pipelines are usually inefficient with time delays and energy losses in cooling load dispatching



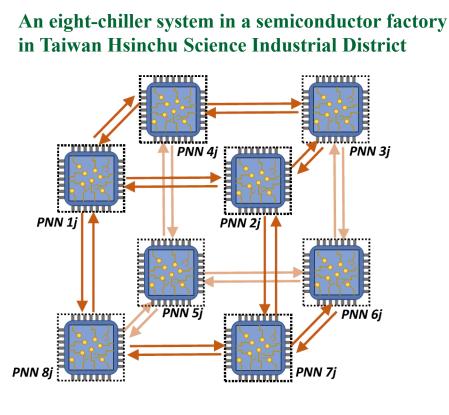


Distributed Chiller Loading I (cont'd)

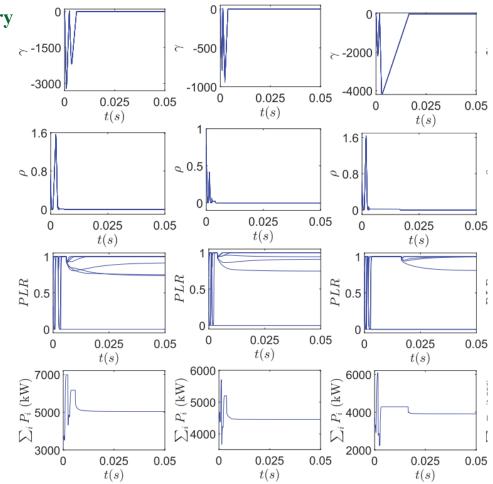
Coupled projection neural networks

$$\begin{cases} \epsilon \frac{dx^{(j)}}{dt} = -x^{(j)} + P_{\Omega} \left(x^{(j)} - \left(\nabla P(x^{(j)}) + \nabla g(x^{(j)}) \lambda^{(j)} \right. \\ \left. + \nabla h(x^{(j)}) \mu^{(j)} + \alpha \nabla g(x^{(j)}) D(\lambda^{(j)}) g(x^{(j)}) \right. \\ \left. + \beta \nabla h(x^{(j)}) h(x^{(j)}) + \left[\frac{D(\overline{P})\gamma^{(j)}}{0} \right] + \left[\frac{0}{\rho^{(j)}} \right] \right) \right) \\ \epsilon \frac{d\lambda^{(j)}}{dt} = -\lambda^{(j)} + (\lambda^{(j)} + g(x^{(j)}))^+ \\ \epsilon \frac{d\mu^{(j)}}{dt} = h(x^{(j)}) \\ \epsilon \frac{d\mu^{(j)}}{dt} = D(\overline{P}) P L R^{(j)} - \tilde{P}_D - L \nu^{(j)} - L \gamma^{(j)} \\ \epsilon \frac{d\nu^{(j)}}{dt} = L \gamma^{(j)} \\ \epsilon \frac{d\rho^{(j)}}{dt} = -\rho^{(j)} + \left(\rho^{(j)} + \left(y^{(j)} - \tilde{k} \right) - L \rho^{(j)} - L \omega^{(j)} \right)^+ \\ \epsilon \frac{d\omega^{(j)}}{dt} = L \rho^{(j)}. \end{cases}$$

Distributed Chiller Loading I (cont'd)



Communication Links among Eight Chillers



Distributed Chiller Loading I (cont'd)

Performance Comparisons

A 20-chiller system

Mathal	T		$P_D = 8$	000 RT			$P_D = 7$	000 RT			$P_D = 6$	000 RT		
Method	Туре	best	worst	average	SD	best	worst	average	SD	best	worst	average	SD	
GA [5]	Cen.	4753.76	4937.83	4820.09	41.49	4007.62	4306.64	4188.72	41.47	3405.03	3762.39	3625.51	104.95	
PSO [5]	Cen.	4734.77	5952.85	5022.53	256.79	3935.20	4736.15	4147.30	200.63	3216.29	3976.31	3336.61	166.04	
DE [7]	Cen.	4834.23	5544.16	5145.81	157.69	4014.22	4997.32	4425.73	210.09	3273.93	4106.53	3690.33	204.26	
IFA [8]	Cen.	4735.71	4735.83	4735.75	0.02	3963.71	4112.02	4087.98	46.04	3296.50	3714.69	3486.36	114.06	
CNO-CL [12]	Cen.	4734.01	4734.01	4734.01	0.00	3935.19	3935.19	3935.19	0.00	3216.29	3216.29	3216.29	0.00	
CNO-DCL	Dis.	4734.01	4734.01	4734.01	0.00	3935.19	3935.19	3935.19	0.00	3216.29	3216.29	3216.29	0.00	
	т		$P_D = 5$	000 RT			$P_D = 4000 \text{ RT}$				$P_D = 3000 \text{ RT}$			
Method	Туре	best	worst	average	SD	best	worst	average	SD	best	worst	average	SD	
GA [5]	Cen.	2766.31	3280.86	2994.23	123.97	2123.48	2837.19	2368.83	155.69	1533.06	2131.79	1751.24	153.42	
PSO [5]	Cen.	2587.76	3239.43	2706.77	163.63	1922.78	2272.56	1984.96	97.14	1363.33	2089.65	1498.63	147.25	
DE [7]	Cen.	2587.76	2650.48	2589.64	10.75	1952.11	2762.98	2308.12	192.71	1363.33	1515.19	1377.59	20.77	
IFA [8]	Cen.	2557.33	3578.22	2939.19	185.82	1922.79	2936.13	2364.70	196.63	1408.76	2297.29	1790.33	177.22	
CNO-CL [12]	Cen.	2557.33	2557.33	2557.33	0.00	1922.78	1922.78	1922.78	0.00	1363.33	1363.33	1363.33	0.00	
CNO-DCL	Dis.	2557.33	2557.33	2557.33	0.00	1922.78	1922.78	1922.78	0.00	1363.33	1363.33	1363.33	0.00	

Z. Chen, J. Wang, and Q.L. Han, "<u>A collaborative neurodynamic optimization approach to distributed chiller loading</u>," *IEEE Transactions on Neural Networks and Learning Systems*, in press, 2023.

Event-triggered Projection Neural Network $\int \epsilon \frac{dx_i(t)}{dt} = -\theta(t)x_i(t) + \theta(t)P_{\Omega_i} \left(x_i(t) - \left(\nabla f_i(x_i(t)) + \nabla g'_i(x_i(t))^T \lambda'_i(t) \right) \right)$ $+ \nabla h'_{i}(x_{i}(t))^{T} v'_{i}(t) + \nabla \bar{g}''_{i}(x_{i}(t))^{T} \zeta''_{i}(t)$ $+ \nabla \bar{h}_{i}''(x_{i}(t))^{T} \mu_{i}''(t)$ $+ \alpha \nabla g'_i(x_i(t))^T \operatorname{diag}(\lambda'_i(t)^2) g'_i(x_i(t))$ $+\beta\nabla h'_i(x_i(t))^T h'_i(x_i(t)) \bigg) \bigg),$ Z. Xia, Y. Liu, and J. Wang, "An event- $\epsilon \frac{d\lambda'_i(t)}{dt} = \theta(t) \left(-\lambda'_i(t) + (\lambda'_i(t) + g'_i(x_i(t)))^+ \right),$ triggered $\epsilon \frac{dv_i'(t)}{dt} = \theta(t)h_i'(x_i(t)),$ collaborative $\epsilon \frac{d\zeta_i''(t)}{dt} = \theta(t) \left(-\zeta_i''(t) + \left(\zeta_i''(t) + g_i''(x_i(t)) \right) \right)$ neurodynamic approach to $-\sum_{i=1}^{N}a_{ij}\left(\zeta_{i}^{\prime\prime}(t)+\rho_{i}^{\prime\prime}(t)-\zeta_{j}^{e}(t)-\rho_{j}^{e}(t)\right)\right)^{+}\right),$ distributed global optimization," $\epsilon \frac{d\rho_i''(t)}{dt} = \theta(t) \sum_{i=1}^N a_{ij} \left(\zeta_i''(t) - \zeta_j^e(t) \right),$ Neural Networks, vol. 169, pp.181- $\left| \epsilon \frac{d\mu_i''(t)}{dt} = \theta(t) \left(h_i''(x_i(t)) - \sum_{i=1}^N a_{ij} \left(\mu_i''(t) + \omega_i''(t) - \mu_j^e(t) - \omega_j^e(t) \right) \right),$ 190, January 2024. $\varepsilon \frac{d\omega_i''(t)}{dt} = \theta(t) \sum_{i=1}^{N} a_{ij} \left(\mu_i''(t) - \mu_j^e(t) \right)$

Event-triggered Updating Rules

$$\hat{\zeta}_{i}^{e}\left(\tau_{k_{i}+1}^{(i)}\right) = \hat{\zeta}_{i}^{e}\left(\tau_{k_{i}}^{(i)}\right) - \eta\left(\tau_{k_{i}+1}^{(i)}\right)\theta\left(\tau_{k_{i}+1}^{(i)}\right)Q\left(\sigma_{i}^{\zeta}\left(\tau_{k_{i}+1}^{(i)}\right)\right)$$

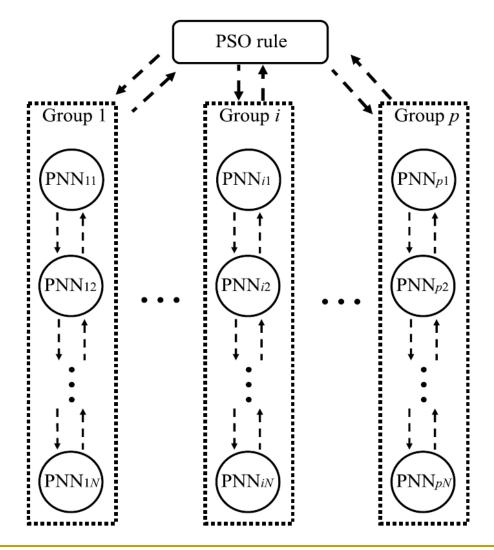
$$\hat{\rho}_{i}^{e}\left(\tau_{k_{i}+1}^{(i)}\right) = \hat{\rho}_{i}^{e}\left(\tau_{k_{i}}^{(i)}\right) - \eta\left(\tau_{k_{i}+1}^{(i)}\right)\theta\left(\tau_{k_{i}+1}^{(i)}\right)Q\left(\sigma_{i}^{\rho}\left(\tau_{k_{i}+1}^{(i)}\right)\right)$$

$$\hat{\mu}_{i}^{e}\left(\tau_{k_{i}+1}^{(i)}\right) = \hat{\mu}_{i}^{e}\left(\tau_{k_{i}}^{(i)}\right) - \eta\left(\tau_{k_{i}+1}^{(i)}\right)\theta\left(\tau_{k_{i}+1}^{(i)}\right)Q\left(\sigma_{i}^{\mu}\left(\tau_{k_{i}+1}^{(i)}\right)\right)$$

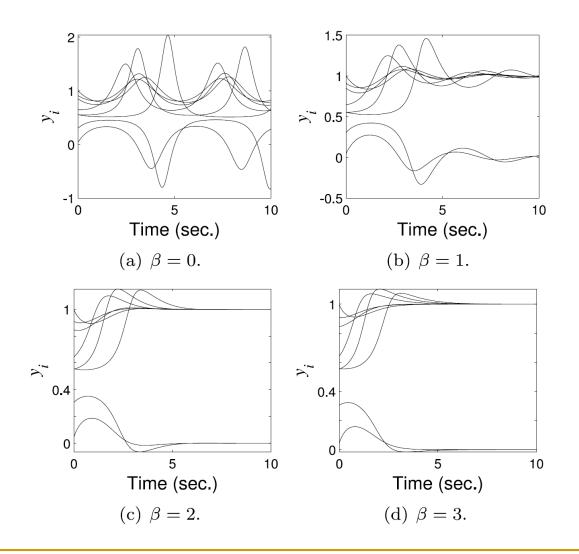
$$\hat{\omega}_{i}^{e}\left(\tau_{k_{i}+1}^{(i)}\right) = \hat{\omega}_{i}^{e}\left(\tau_{k_{i}}^{(i)}\right) - \eta\left(\tau_{k_{i}+1}^{(i)}\right)\theta\left(\tau_{k_{i}+1}^{(i)}\right)Q\left(\sigma_{i}^{\omega}\left(\tau_{k_{i}+1}^{(i)}\right)\right)$$

Z. Xia, Y. Liu, and **J. Wang**, "<u>An event-triggered collaborative neurodynamic</u> approach to distributed global optimization," *Neural Networks*, vol. 169, pp.181-190, January 2024.

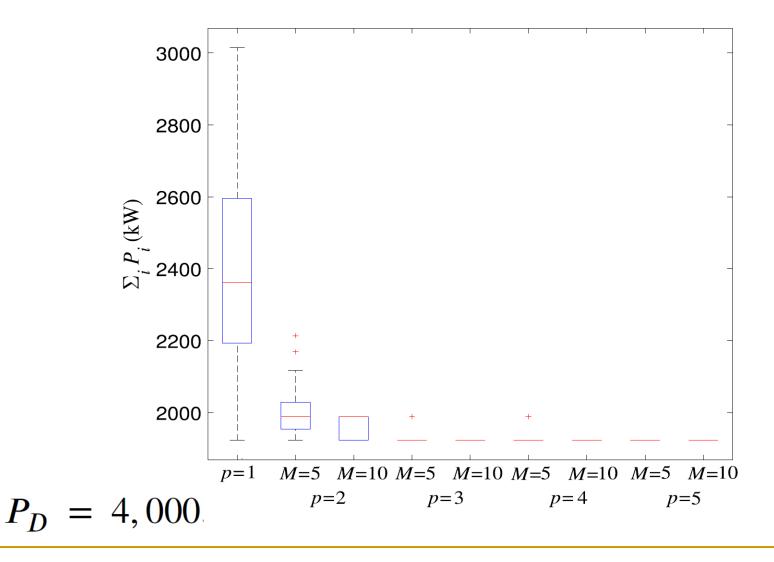
Schematic Diagram



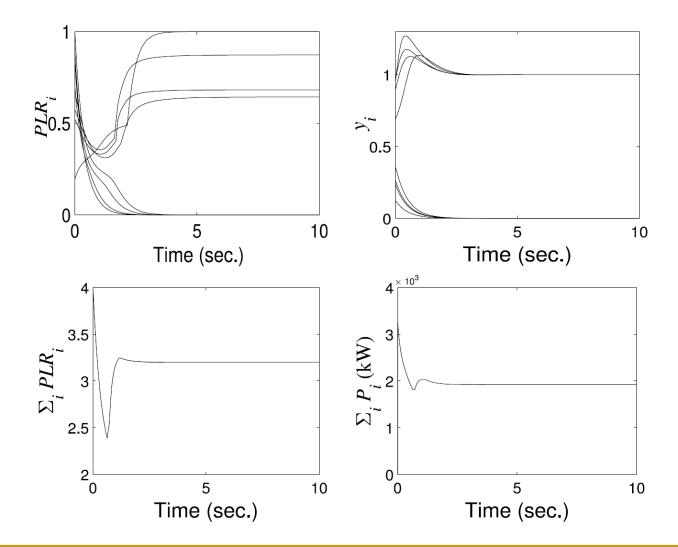
Parametrical Effects



Parametrical Effects (cont'd)

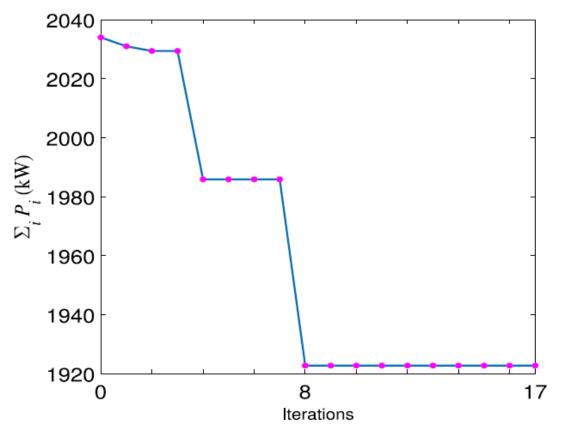


Convergent Behaviors



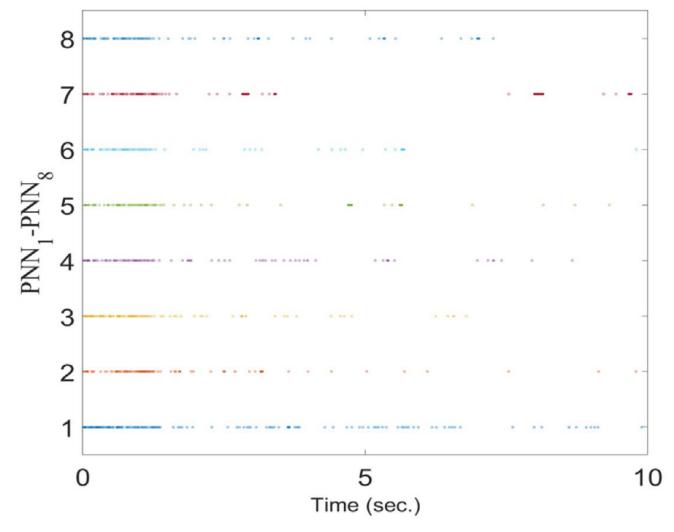
TU-Wien, Vienna, Austria; June 10, 2024

Convergent Behaviors (cont'd)

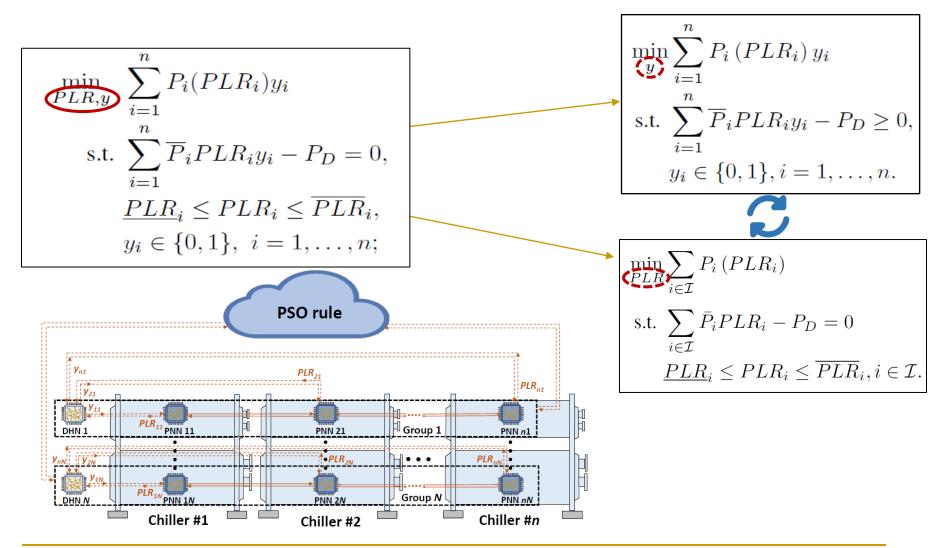


Z. Xia, Y. Liu, and **J. Wang**, "<u>An event-triggered collaborative neurodynamic</u> <u>approach to distributed global optimization</u>," *Neural Networks*, vol. 169, pp.181-190, January 2024.

Communication Frequency



Distributed Chiller Loading II



Distributed Chiller Loading II (cont'd) An eight-chiller system

Mall	T		P _D =8000	RT			P _D =7000	RT			P _D =6000	RT	
Method	Type	best / worst	mean	SD	average time	best / worst	mean	SD	average time	best / worst	mean	SD	average time
GA [9]	Cen.	4753.76 / 4937.83	4820.09	41.49	4.89	4007.62 / 4306.64	4188.72	41.47	4.74	3405.03 / 3762.39	3625.51	104.95	4.75
PSO 9	Cen.	4734.77 / 5952.85	5022.53	256.79	1.59	3935.20 / 4736.15	4147.30	200.63	1.58	3216.29 / 3976.31	3336.61	166.04	1.58
DE [11]	Cen.	4834.23 / 5544.16	5145.81	157.69	4.27	4014.22 / 4997.32	4425.73	210.09	4.30	3273.93 / 4106.53	3690.33	204.26	4.29
IFA [12]	Cen.	4735.71 / 4735.83	4735.75	0.02	28.21	3963.71 / 4112.02	4087.98	46.04	28.09	3296.50 / 3714.69	3486.36	114.06	28.06
CNO-CL [14]	Cen.	4734.01 / 4734.01	4734.01	0.00	15.95	3935.19 / 3935.19	3935.19	0.00	36.25	3216.29 / 3216.29	3216.29	0.00	60.14
CNO-DCL	Dis.	4734.01 / 4734.01	4734.01	0.00	2.84	3935.19 / 3935.19	3935.19	0.00	26.73	3216.29 / 3216.29	3216.29	0.00	25.25
		$P_D=5000 \text{ RT}$											
14.4.1	m		$P_D = 5000$	RT			P_D =4000	RT			$P_D = 3000$	RT	
Method	Туре	best / worst	P _D =5000 mean	RT SD	average time	best / worst	P _D =4000 mean	RT SD	average time	best / worst	P _D =3000 mean	RT SD	average time
Method GA [9]	Type Cen.	best / worst 2766.31 / 3280.86	В		average time 4.96	best / worst 2123.48 / 2837.19	D			best / worst 1533.06 / 2131.79	D		average time 5.10
			mean	SD			mean	SD			mean	SD	
GA [9]	Cen.	2766.31 / 3280.86	mean 2994.23	SD 123.97	4.96	2123.48 / 2837.19	mean 2368.83	SD 155.69	4.96 1.68	1533.06 / 2131.79	mean 1751.24	SD 153.42	5.10
GA [9] PSO [9]	Cen. Cen.	2766.31 / 3280.86 2587.76 / 3239.43	mean 2994.23 2706.77	SD 123.97 163.63	4.96 1.57	2123.48 / 2837.19 1922.78 / 2272.56	mean 2368.83 1984.96	SD 155.69 97.14	4.96 1.68 4.02	1533.06 / 2131.79 1363.33 / 2089.65	mean 1751.24 1498.63	SD 153.42 147.25	5.10 1.72
GA [9] PSO [9] DE [11]	Cen. Cen. Cen.	2766.31 / 3280.86 2587.76 / 3239.43 2587.76 / 2650.48	mean 2994.23 2706.77 2589.64	SD 123.97 163.63 10.75	4.96 1.57 4.19	2123.48 / 2837.19 1922.78 / 2272.56 1952.11 / 2762.98	mean 2368.83 1984.96 2308.12	SD 155.69 97.14 192.71	4.96 1.68 4.02	1533.06 / 2131.79 1363.33 / 2089.65 1363.33 / 1515.19	mean 1751.24 1498.63 1377.59	SD 153.42 147.25 20.77	5.10 1.72 4.02
GA [9] PSO [9] DE [11] IFA [12]	Cen. Cen. Cen. Cen.	2766.31 / 3280.86 2587.76 / 3239.43 2587.76 / 2650.48 2557.33 / 3578.22	mean 2994.23 2706.77 2589.64 2939.19	SD 123.97 163.63 10.75 185.82	4.96 1.57 4.19 28.08	2123.48 / 2837.19 1922.78 / 2272.56 1952.11 / 2762.98 1922.79 / 2936.13	mean 2368.83 1984.96 2308.12 2364.70	SD 155.69 97.14 192.71 196.63	4.96 1.68 4.02 27.97	1533.06 / 2131.79 1363.33 / 2089.65 1363.33 / 1515.19 1408.76 / 2297.29	mean 1751.24 1498.63 1377.59 1790.33	SD 153.42 147.25 20.77 177.22	5.10 1.72 4.02 27.69

A 20-chiller system

Malal	T		PD=13050 I	RT			P _D =11600	RT			P _D =10150	RT	
Method	Туре	best / worst	mean	SD	average time	best / worst	mean	SD	average time	best / worst	mean	SD	average time
GA [9]	Cen.	9293.78 / 9401.31	9326.04	19.29	7.50	7293.64 / 7361.76	7322.59	15.50	7.51	5910.94 / 6024.68	5947.46	22.22	7.40
PSO [9]	Cen.	9307.41 / 10650.73	9734.65	351.31	4.68	7942.34 / 10992.43	9149.29	658.79	4.76	6269.72 / 7563.12	6799.53	220.73	4.74
DE [11]	Cen.	10188.39 / 11267.59	10746.82	219.46	7.09	7917.54 / 9502.17	8921.39	307.28	7.11	6956.12 / 8048.28	7458.87	306.82	7.05
IFA 12	Cen.	9286.71 / 9287.49	9286.98	0.17	134.02	7278.37 / 7278.58	7278.45	0.04	129.78	5890.74 / 5965.45	5896.54	19.51	129.47
CNO-CL [14]	Cen.	9286.49 / 9286.49	9286.49	0.00	62.48	7278.32 / 7278.32	7278.32	0.00	48.41	5890.69 / 5890.69	5890.69	0.00	57.45
CNO-DCL	Dis.	9286.49 / 9286.49	9286.49	0.00	0.53	7278.32 / 7278.32	7278.32	0.00	0.65	5890.69 / 5890.69	5890.69	0.00	1.22
Mathad	т		P _D =8700 R	Т			$P_D = 7250$	RT			$P_D = 5800$	RT	
Method	Туре	best / worst	mean	SD	average time	best / worst	mean	SD	average time	best / worst	mean	SD	average time
GA [9]	Cen.	4975.30 / 5079.74	5019.05	23.24	7.39	4157.11 / 4481.54	4258.88	58.81	7.69	3322.83 / 3563.15	3437.40	57.32	7.65
PSO [9]	Cen.	5080.86 / 5697.55	5407.83	126.59	4.87	4125.79 / 4699.08	4348.79	117.64	4.79	3245.64 / 3705.91	3508.28	105.54	4.78
DE [11]	Cen.	5679.43 / 6747.46	6285.46	256.47	7.03	4423.34 / 5773.08	5164.85	272.14	7.02	3634.22 / 4624.62	4015.83	189.90	7.00
IFA [12]	Cen.	4942.76 / 5005.12	4970.55	17.55	129.04	4103.48 / 4327.59	4181.83	51.55	130.60	3267.88 / 3503.05	3351.42	48.33	130.11
CNO-CL [14]	Cen.	4942.64 / 4942.64	4942.64	0.00	296.96	4074.55 / 4080.84	4075.28	1.95	672.30	3225.91 / 3233.22	3226.64	2.25	657.17
CNO-DCL	Dis.	4942.64 / 4942.64	4942.64	0.00	6.11	4074.55 / 4074.55	4074.55	0.00	9.99	3225.91 / 3225.91	3225.91	0.00	4.45

Z. Chen, J. Wang, and Q.L. Han, "Distributed Chiller Loading via Collaborative Neurodynamic Optimization with Heterogeneous Neural Networks," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 54, no 4, 2024.

Event-triggered Chiller Loading

$$\min_{\text{PLR},y} \sum_{i=1}^{n} f_i(\text{PLR}_i(t))$$
Power consumptions.t. $\sum_{i=1}^{n} \bar{P}_i \text{PLR}_i(t) - P_D = 0,$ Supply-demand constraint $\text{PLR}_i y_i(t) \le P_i(t) \le \overline{\text{PLR}}_i y_i(t),$ Capacity constraints $\sum_{i=1}^{n} y_i(t) \le k(P_D),$ Cardinality constraint $y_i(t)(1-y_i(t)) = 0.$ Quadratic equations

Event-triggered Chiller Loading (cont'd)

The triggering instant $t_{m+1} = \min\{\tau > t_m \mid |P_D(\tau) - P_D(t_m)| \ge \sigma_e P_D(t_m)\}$

			$P_D(t)$ (kW)	Total power	Total energy			
Method	6858	6477	6096	5717	5334	consumption (kW)	consumption (kJ)	
GAMS [8]	4738.5753	4421.6486	4143.7064	3842.5532	3546.4375	20692.9210	74494515.6000	
AVL [2]	4916.93	4635.22	4358.71	4087.20	3821.34	21819.40	78549840.00	
GA [2]	4766.33	4459.16	4185.87	3940.60	3706.22	21058.18	75809448.00	
SA [3]	4776.98	4453.64	4178.80	3925.16	3675.18	21009.76	75635136.00	
BGA [4]	4744.6512	4445.3493	4172.6155	3911.0079	3694.0319	20967.6558	75483560.8800	
CGA [4]	4738.9645	4430.2444	4147.8178	3907.7607	3686.8597	20911.6471	75281929.5600	
PSO [4]	4739.7845	4423.0534	4147.8055	3920.9642	3642.5786	20874.1862	75147070.3200	
ES [5]	4738.76	4422.06	4144.12	3906.19	3627.46	20838.59	75018924.00	
DCEDA [27]	4738.6600	4421.6739	4143.7297	3842.6020	3546.6437	20693.3093	74495913.4800	
IFA [6]	4738.576	4421.649	4143.706	3960.573*	3627.760*	20892.264	75212150.400	
DCSA [7]	4738.575	4421.649	4143.706	3960.560*	3627.987*	20892.477	75212917.200	
ET-CNO-LD	4738.5753	4421.6486	4143.7064	3842.5532	3546.4375	20692.9210	74494515.6000	

Z. Chen, J. Wang, and Q.L. Han, "Event-triggered cardinality-constrained cooling and electrical load dispatch based on collaborative neurodynamic optimization," *IEEE Trans. Neural Networks and Learning Systems*, vol. 34, pp. 5464-5475, 2023.

Receding-Horizon Chiller Loading

OCL planning over a multi-period

- Chillers should **NOT be frequently switched on or off** to avoid excess attrition and prolong the lifespan of chillers
- Once a chiller is switched on or off, it should be kept on its current on/off status for a while to warm up or cool down (minimum-up/down-time constraints)
- In most existing formulations, the minimum-up/down-time constraints are absent

$$\min_{PLR,y} \sum_{t=t_0}^{t_0+T-1} \sum_{i=1}^{n} P_i(PLR_i(t))y_i(t)$$
s.t.
$$\sum_{i=1}^{n} \overline{P}_iPLR_i(t)y_i(t) = P_D(t),$$

$$t \in \{t_0, \dots, t_0+T-1\},$$

$$\sum_{\tau=1}^{\tau_{on}} (y_i(t+\tau-1) - (y_i(t) - y_i(t-1))) \ge 0,$$

$$i \in \{1, \dots, n\}, t \in \{t_0 - T_{on} + 1, \dots, t_0 + T - 1\},$$

$$\sum_{\tau=1}^{\tau_{off}} (y_i(t+\tau-1) - 1 - (y_i(t) - y_i(t-1))) \ge 0,$$

$$i \in \{1, \dots, n\}, t \in \{t_0 - T_{onf} + 1, \dots, t_0 + T - 1\},$$

$$pLR_i \le PLR_i(t) \le \overline{PLR}_i,$$

$$i \in \{1, \dots, n\}, t \in \{t_0, \dots, t_0 + T - 1\},$$

$$y_i(t) \in \{0, 1\},$$

$$i \in \{1, \dots, n\}, t \in \{t_0, \dots, t_0 + T - 1\},$$

$$Total power consumption$$

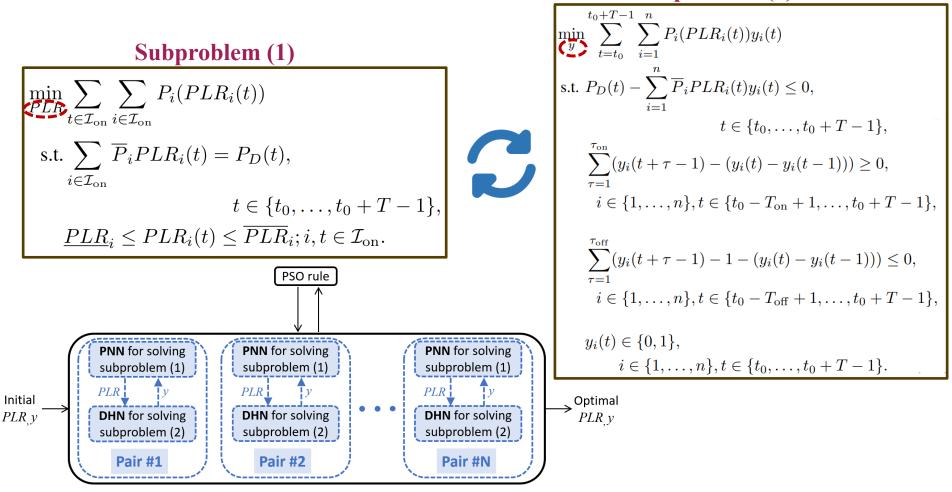
$$Supply-demand constraints$$

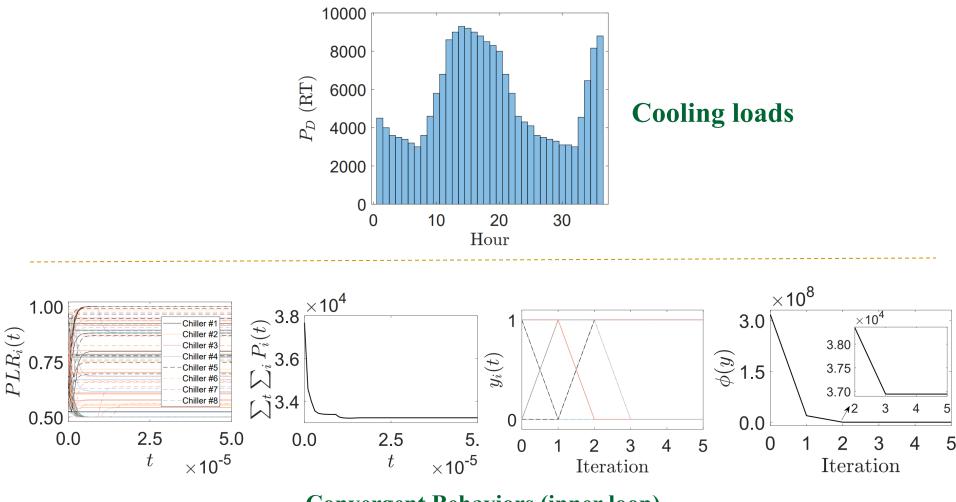
$$Minimum-up/down-time constraints$$

$$Capacity constraints$$

$$Binary constraints$$

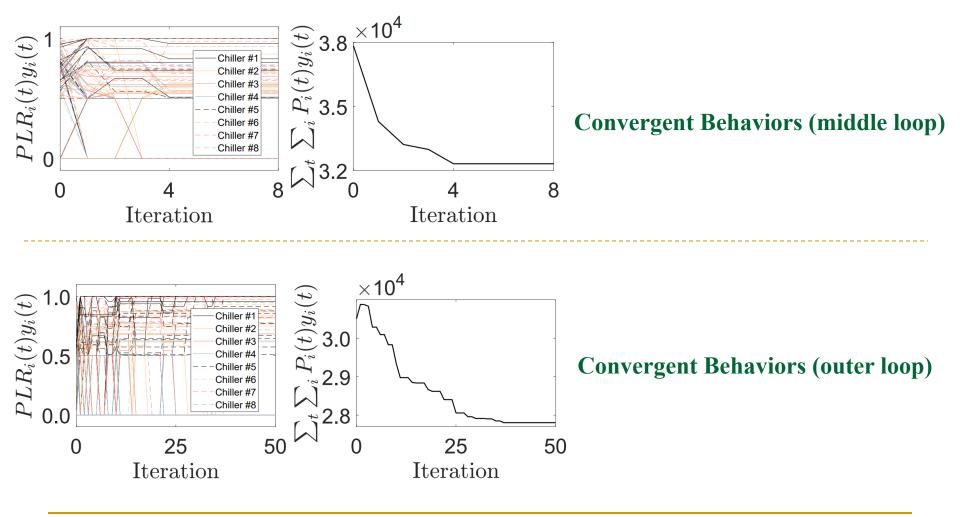
Subproblem (2)





Convergent Behaviors (inner loop)

TU-Wien, Vienna, Austria; June 10, 2024



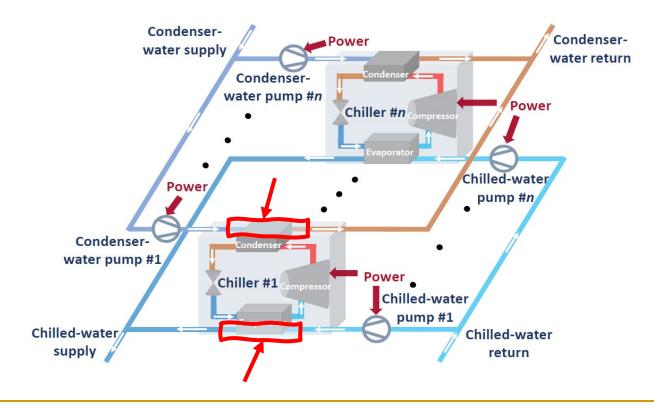
	Hour	1	2	3	4	5	6	7	8
	Chiller #1	1.00	1.00	0.96	1.00	1.00	1.00	1.00	0.96
	Chiller #2	0.75	0.68	0.63	0.80	0.74	0.74	0.70	0.63
	Chiller #3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Chiller #4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Chiller #5	0.86	0.64	0.51	0.00	0.00	0.82	0.70	0.51
	Chiller #6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Chiller #7	0.99	0.87	0.78	1.00	0.98	0.00	0.00	0.78
	Chiller #8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	$\sum_i P_i(t) y_i(t)$	2187.47	1922.78	1751.20	1661.65	1599.51	1611.26	1504.17	1751.20
	Hour	9	10	11	12	13	14	15	16
	Chiller #1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Chiller #2	0.77	0.82	0.84	0.87	0.92	0.97	0.95	0.92
	Chiller #3	0.00	0.00	0.00	0.68	0.73	0.76	0.75	0.73
$T_{\rm on} = 3$ hours $T_{\rm off} = 2$ hours	Chiller #4	0.00	0.00	0.00	0.62	0.69	0.76	0.74	0.69
n on on on one	Chiller #5	0.91	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$T = 2 h_{\text{output}}$	Chiller #6	0.00	0.82	0.88	0.93	1.00	1.00	1.00	1.00
$I_{\rm off} - 2$ nours	Chiller #7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
011	Chiller #8	0.00	0.00	0.72	0.77	0.87	0.95	0.92	0.87
	$\sum_{i} P_i(t) y_i(t)$	2248.00	3056.32	3766.62	5211.04	5586.61	5912.30	5798.74	5586.61
	Hour	17	18	19	20	21	22	23	24
	Chiller #1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Chiller #2	0.89	0.86	0.84	0.89	0.84	0.87	0.77	0.72
	Chiller #3	0.70	0.68	0.66	0.71	0.00	0.00	0.00	0.00
	Chiller #4	0.65	0.60	0.56	0.00	0.00	0.00	0.00	0.00
	Chiller #5	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.77
	Chiller #6	0.97	0.91	0.87	0.98	0.88	0.00	0.00	0.00
	Chiller #7	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95
	Chiller #8	0.82	0.75	0.71	0.82	0.72	0.77	0.00	0.00
	$\sum_i P_i(t) y_i(t)$	5392.19	5125.03	4961.54	4734.01	3766.62	3100.12	2248.00	2074.42

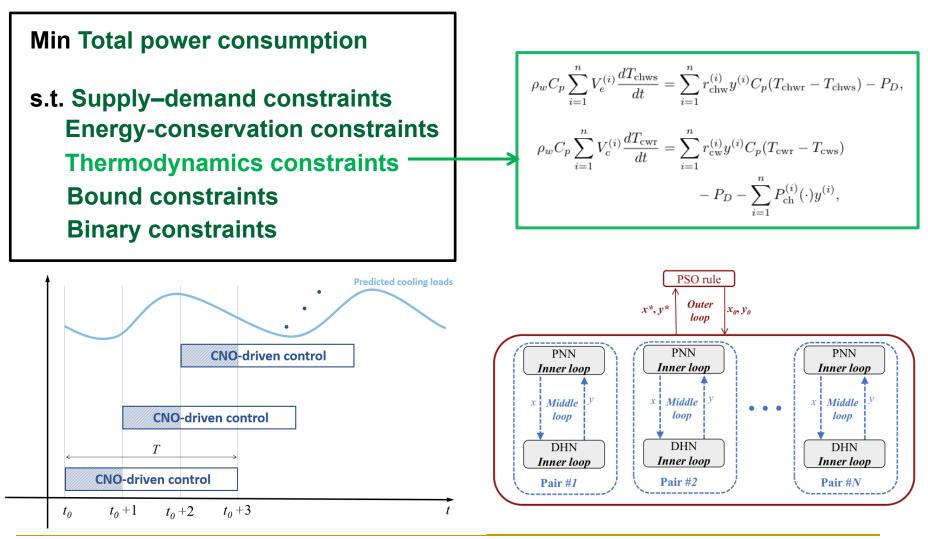
Z. Chen, J. Wang, and Q.L. Han, "<u>Receding-Horizon Chiller Operation Planning via Collaborative Neurodynamic Optimization</u>," *IEEE Trans. on Smart Grid*, vol. 15, no. 2, pp. 2321-2331, 2024.

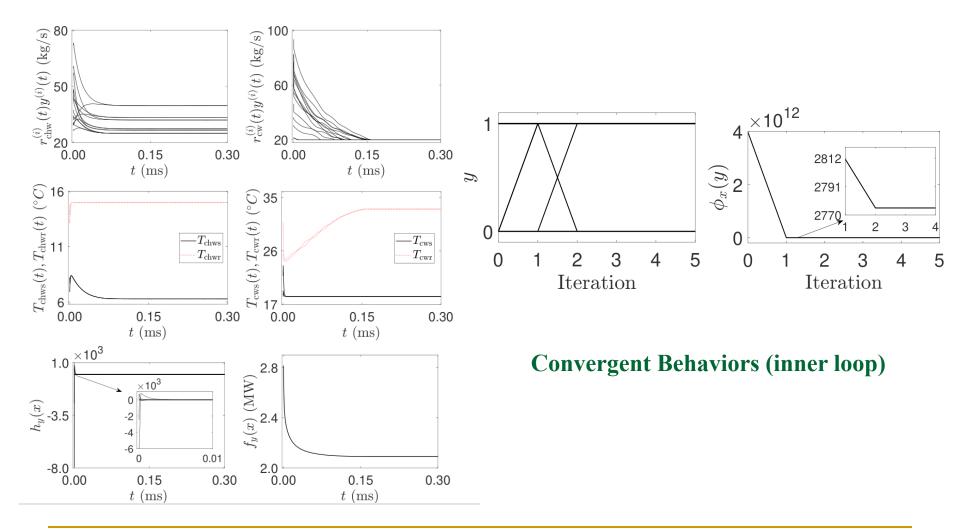
Hybrid Model Predictive Control

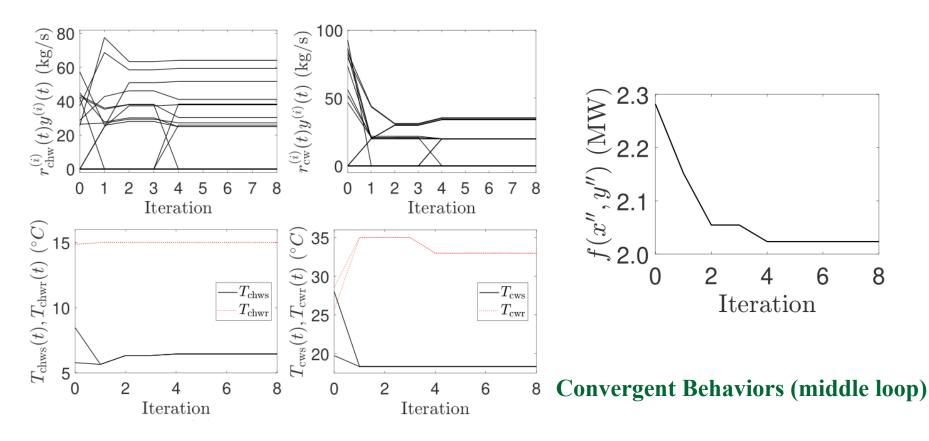
Motivation

• Existing model-based control schemes do NOT consider thermodynamics in chillers, making them less realistic

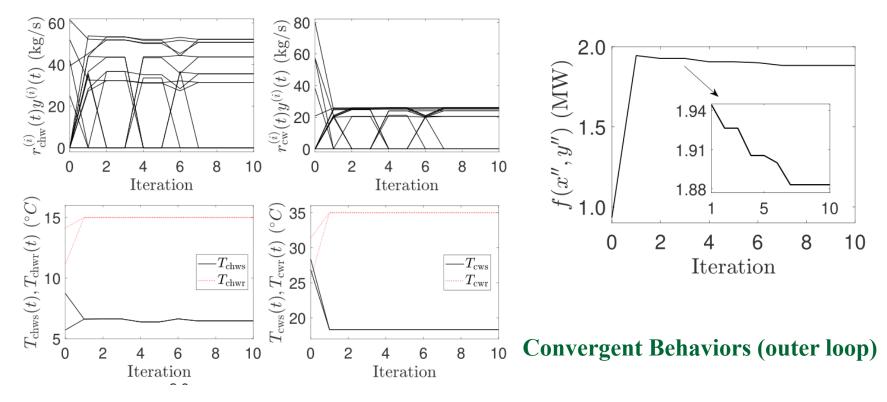




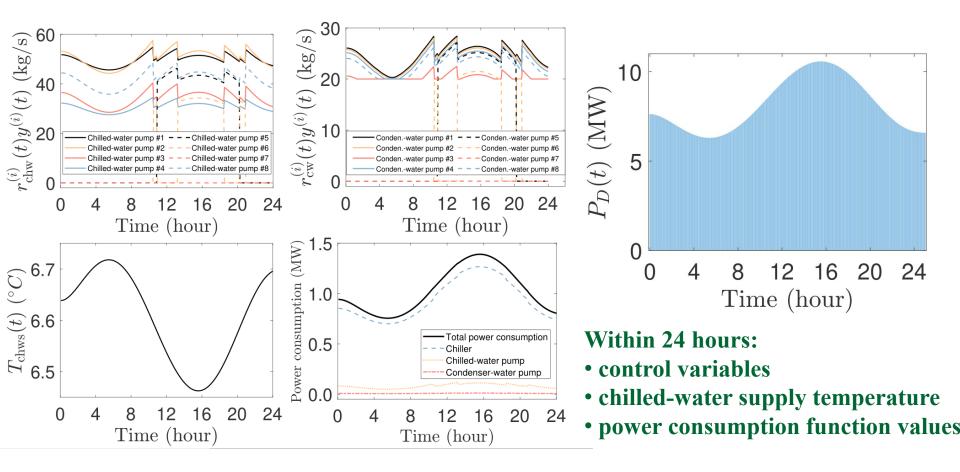




Z. Chen, J. Wang, and Q.L. Han, "<u>Hybrid model predictive control of chiller systems via</u> <u>collaborative neurodynamic optimization</u>," *IEEE Transactions on Industrial Informatics,* in press.



Z. Chen, J. Wang, and Q.L. Han, "<u>Hybrid model predictive control of chiller systems via</u> <u>collaborative neurodynamic optimization</u>," *IEEE Transactions on Industrial Informatics,* in press.



Z. Chen, J. Wang, and Q.L. Han, "<u>Hybrid model predictive control of chiller systems via collaborative neurodynamic optimization</u>," *IEEE Transactions on Industrial Informatics*, in press.

Concluding Remarks

- Collaborative neurodynamic optimization is a biologically and socially plausible approach.
- It has the desirable properties of almost-sure global convergence.
- It serves as a bridge between neurodynamic optimization and other natural-inspired optimization methods toward hybrid intelligence.
- Collaboration is the key to success.
- It plays an instrumental role in many applications where optimization problem-solving is imperative.

