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Vision Transformer

5
https://www.leewayhertz.com/vision-transformer-model/



Models considered as
foundation models

● Language Models: 
○ e.g. BERT, GPT family, LLama family,…

● Vision Models:
○ e.g. Vision Transformers (ViTs), DINO, SimCLR,...

● Multimodal Models: 
○ CLIP, Gemini,...

1 Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks 
of foundation models. arXiv preprint arXiv:2108.07258.



Properties of foundation models?

● Pre-trained on Massive Data 
○ EU AI Act: FM if more than 1025 FLOPS used for training

● Self-Supervised Learning 
● Scalability 
● Multimodal Capabilities 
● Adaptability

[..] any model that is trained on broad data (generally using self-supervision at scale) that can be 
adapted (e.g., fine-tuned) to a wide range of downstream tasks. 1

1 Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., ... & Liang, P. (2021). On the opportunities and risks 
of foundation models. arXiv preprint arXiv:2108.07258.



Properties of foundation models?

● Pre-trained on Massive Data 
● Self-Supervised Learning 
● Scalability 
● Multimodal Capabilities 
● Adaptability

○ Good performance when fine-tuned to a variety of 
new tasks

○ In-context learning



In-context learning

● New task described via context       (additional input)
● Model’s             ability to adapt to and solve 

new task            based on additional input 
● No weights     in the neural network changed



In-context learning



RNNs & LSTM



RNNs map the input of one time step and the last hidden state to a new hidden state

RNNs are neural nets with adaptive weight matrices (optimized/trained to solve a task):

The same transformation is applied in each time step. Output: probability of next word.

Recurrent neural networks

12
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LSTM

Long term 
memory 
through cell 
states



LSTM cells

Note: scalar notation for cell state!
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The unreasonable effectiveness of 
recurrent neural networks

Andrej Karpathy

Founding member 
of OpenAI
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Overview

20

RNNs/LSTM Transformer xLSTM

Context handling Theory: infinite context 
length
Practice: few hundred 
steps

Memory usage Constant memory usage

Parallelizability Not parallelizable across 
time steps



The age of 
Transformers
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LSTM-based Transformer
-based

Transformer
-based

Transformer
-based

Transformer
-based

“Attention is all you need” 
replaces LSTM layers with 

attention mechanism

LSTM-based



The age of Transformers and LLMs
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Transformer and self-attention

Attention mechanism
● Dot product between

○ Keys

○ Queries

● All time steps (tokens) can 
be processed in parallel

● Softmax for sparseness
● Quadratic in time steps



Transformer and self-attention

Generative Pre-trained 
Transformers (GPT)
● Input as set

● Main operation (parallel!)
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Transformer and self-attention

Generative Pre-trained 
Transformers (GPT)
● Input as set

● Main operation (parallel!)
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Transformer and self-attention

Generative Pre-trained 
Transformers (GPT)
● Input as set

● Main operation (parallel!)
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Transformer and self-attention

Generative Pre-trained 
Transformers (GPT)
● Input as set

● Main operation (parallel!)
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Parallelizability of the transformer

Attention mechanism
● Dot product between

○ Keys

○ Queries

● All time steps (tokens) can be 
processed in parallel

● Softmax for sparseness
● Quadratic in context size



Overview
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RNNs/LSTM Transformer xLSTM

Context handling Theory: infinite context 
length
Practice: few hundred 
inputs

Strong long-range 
capacity
Fixed context window

Memory usage Constant memory usage Memory usage grows 
with context size

Parallelizability Not parallelizable across 
time steps

Parallelizable across 
time steps



The age of 
recurrent LLMs?



LSTM and the test-of-time

LSTMs in reinforcement learning, e.g. OpenAI Five
Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., 

... & Zhang, S. (2019). Dota 2 with large scale deep reinforcement 
learning. arXiv preprint arXiv:1912.06680.

LSTMs as basis of language 
models (until 2017)

LSTMs in hydrology 
Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., 
Harrigan, S., ... & Matias, Y. (2024). Global prediction of 

extreme floods in ungauged watersheds. Nature, 
627(8004), 559-563.



Long short-term memory and
the constant error carousel (CEC)

● Cell state
● Cell inputs  
● Forget gate 
● Input gate 

34



Review of LSTM

Note: scalar notation for cell state!

35



How far do we get with LSTM in 
language modeling?

when
● scaling LSTMs to billions of parameters

● leveraging the latest techniques from LLMs

● mitigating known limitations of LSTMs?

36



Overview: from LSTM to xLSTM
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LSTM limitations

● Inability to revise storage 
decisions
○ Nearest Neighbor Search

● Limited storage capacities
○ Rare Token Prediction

○ problem with new or rare tokens

● No parallelization for training

38



sLSTM

Revise storage decisions through
● exponential gating
● exponential input gate and normalization 

scales down old inputs

39



sLSTM

Revise storage decisions: 
40



sLSTM: scalar LSTM

Memory                   with       memory cells

Memory capacity:             where     is the hidden
 dimension 

The memory is independent of:
● sequence length
● hidden dimension

        
41



mLSTM

● Limited storage capacities
● New memory structure:

○ matrix memory
○ covariance update rule

● Storage capacity is 
maximized for fixed memory

42

matrix 
memory

matrix 
memory

covariance 
update

memory 
retrieval



mLSTM

Parallelization: gates, keys, queries, values all independent from 43



Parallelizability of mLSTM
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LSTM limitations

● Inability to revise storage 
decisions
○ Nearest Neighbor Search

● Limited storage capacities
○ Rare Token Prediction

○ problem with new or rare tokens

● No parallelization for training

45



xLSTM: mLSTM & sLSTM
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Backbone architecture
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xLSTM: Length extrapolation
Sequence
extrapolation of
1.3B models
trained on
SlimPajama 300B.

Training length:
2048

Test length:
up to 16384.
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xLSTM Scaling Laws
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xLSTM-7B:  A Recurrent LLM for Fast 
and Efficient Inference

● First LSTM-based 7B language model
● Language modeling performance similar to 

other linear LLMs
● More efficient (faster)
● Several changes to architectures

○ E.g. fully based on mLSTM
○ Changes in normalization and gating

● Pareto front: best choice given fixed 
computational budget

● Computing: 
○ Cluster with 256 NVIDIA H100 GPUs
○ Pre-Training: ~140k GPU hours, 

2.3T tokens, +Long-Context Version

Beck, M., Pöppel, K., Lippe, P., Kurle, R., Blies, P. M., Klambauer, G., ... & 
Hochreiter, S. (2025). xLSTM 7B: A Recurrent LLM for Fast and Efficient 
Inference. International Conference on Machine Learning (ICML).



xLSTM: efficient kernels 
hardware optimized

● Triton kernels 
render xLSTM 
extremely fast



Overview
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RNNs/LSTM Transformer xLSTM

Context handling Theory: infinite context 
length
Practice: few hundred 
inputs

Strong long-range 
capacity
Fixed context window

Strong long-range 
capacity
Length extrapolation

Memory usage Constant memory usage Memory usage grows 
with context size

Constant memory usage

Parallelizability Not parallelizable across 
time steps

Parallelizable across 
time steps

Parallelizable across 
time steps



xLSTM

● New:
○ exponential gating and memory mixing
○ memory structure (matrix memory and covariance update)

● Results:
○ xLSTM performs favorably on language modeling when compared to 

Transformers and State Space models

○ The scaling laws indicate that larger xLSTM models will be serious 
competitors to current large language models



Resources for xLSTM



Vision-xLSTM (ViL)



Vision-xLSTM (ViL)

● xLSTM can process image “tokens”
Alkin, B., Beck, M., Pöppel, K., Hochreiter, S., & Brandstetter, J. 
(2025). Vision-LSTM: xLSTM as Generic Vision Backbone. 
International Conference on Learning Representations (ICLR)



Vision-xLSTM (ViL)

● High efficiency and accuracy Alkin, B., Beck, M., Pöppel, K., Hochreiter, S., & Brandstetter, J. 
(2025). Vision-LSTM: xLSTM as Generic Vision Backbone. 
International Conference on Learning Representations (ICLR)



Bio-xLSTM



● Biological Foundation Models:  large models trained on biological domains 
capture important concepts, which enables downstream applications. 

● Transformer Dominance: Transformers remain dominant due to their 
versatility and performance at large scales.

● Scalability & Memory: Transformers face runtime and memory challenges. 
Efficient architectures are critical for processing long-range biological data 
efficiently.  

● xLSTM: xLSTM has shown strong results in natural language tasks. This work 
evaluates its scalability and performance in biological applications.  

Motivation

61



Bio-xLSTM

● BLA

Schmidinger, N., Schneckenreiter, L., Seidl, P., Schimunek, J., Hoedt, P. J., Brandstetter, J., ... & Klambauer, G. (2025). Bio-xLSTM: Generative modeling, 
representation and in-context learning of biological and chemical sequences. International Conference on Learning Representations 2025.



DNA-xLSTM



xLSTM Bidirectionality

Weight Sharing
Alternating Block 

Directions
mLSTM Native
Bidirectionality

ELMo, Peters et.al. 2018

Vision-LSTM, Alkin et.al. 2024 64

https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/2406.04303


Reverse-Complement Invariance

Reverse Complement Equivariance, Mallet et.al. 2021
Caduceus, Schiff et. al. 2024 65

https://proceedings.neurips.cc/paper/2021/hash/706608cfdbcc1886bb7eea5513f90133-Abstract.html
https://arxiv.org/abs/2403.03234


DNA-xLSTM: Short Context

66



DNA-xLSTM: Short Context

DNA-xLSTM2M CLM DNA-xLSTM2M MLM



DNA-xLSTM: Downstream 
Adaptation

Nucleotide Transformer, Dalla-Torre et.al. 2023

https://www.biorxiv.org/content/10.1101/2023.01.11.523679v1


DNA-xLSTM: Long Context

69



Bio-xLSTM

Schmidinger, N., 
Schneckenreiter, L., Seidl, P., 
Schimunek, J., Hoedt, P. J., 
Brandstetter, J., ... & 
Klambauer, G. (2025). 
Bio-xLSTM: Generative 
modeling, representation and 
in-context learning of biological 
and chemical sequences. 
International Conference on 
Learning Representations.



DNA-xLSTM: Long Context

DNA-xLSTM4M CLM DNA-xLSTM4M MLM



Prot-xLSTM



Winning Strategy: Incorporate Evolutionary 
Information 

AlphaFold

Transception MSA Transformer

ESMFold

AlphaFold 2, Jumper et.al. 2021
ESMFold, Lin et.al. 2022

Transception, Notin et.al. 2022
MSA Transformer, Rao et.al.2021 73

https://www.nature.com/articles/s41586-021-03819-2
https://www.biorxiv.org/content/10.1101/2022.07.20.500902v3
https://arxiv.org/abs/2205.13760
https://www.biorxiv.org/content/10.1101/2021.02.12.430858v1.full


Homology-Aware Modeling via 
Conditioning

Poet, Truong et. al. 2023
ProtMamba, Sgarbossa et.al. 2024

https://arxiv.org/abs/2306.06156
https://www.biorxiv.org/content/10.1101/2024.05.24.595730v1


Fill-in-the-Middle (FiM) Augmentation

FiM Illustration

Fill-in-the-Middle, Bavarian et.al. 2022
ProtMamba, Sgarbossa et.al. 2024

https://arxiv.org/abs/2207.14255
https://www.biorxiv.org/content/10.1101/2024.05.24.595730v1


Prot-xLSTM Pretraining



Homology-aware Pre-Training



Homology-aware Generation



Zero-Shot Fitness Prediction

Transception, Notin et.al. 2022
ProtMamba, Sgarbossa et.al. 2024

https://arxiv.org/abs/2205.13760
https://www.biorxiv.org/content/10.1101/2024.05.24.595730v1


Zero-Shot Fitness Prediction
Evaluation



Chem-xLSTM



Unconditional Pre-Training



Unconditional Generation
Evaluation



Conditional Generation



In-context learning



Huggingface App
here!



● Bio-xLSTM: LLM models for DNA, proteins and small molecules
○ Paper (ICLR 2025): https://openreview.net/forum?id=IjbXZdugdj 

● VN-EGNN: binding pocket identification method
○ Paper (pre-print): https://arxiv.org/abs/2404.07194 
○ Github: https://github.com/ml-jku/vnegnn 
○ HuggingFace App: https://huggingface.co/spaces/ml-jku/vnegnn 

● CLOOME: most powerful features for microscopy images (“cell painting”)
○ Paper (NComms): https://www.nature.com/articles/s41467-023-42328-w 
○ Github: https://github.com/ml-jku/cloome 
○ HuggingFace App: https://huggingface.co/spaces/anasanchezf/cloome 

● GNN-VPA: variance-preserving aggregation for message-passing networks
○ Paper (ICLR 2024): https://arxiv.org/abs/2403.04747 
○ Implementation: https://pytorch-geometric.readthedocs.io/en/latest/

generated/torch_geometric.nn.aggr.VariancePreservingAggregation.html 
● CLAMP: multi-modal bioactivity prediction model with in-context capacity

○ Paper (ICML 2023): https://arxiv.org/abs/2303.03363 
○ Github: https://github.com/ml-jku/clamp 

● MHNfs: best few-shot learning method via in-context learning
○ Paper (ICLR 2023): https://openreview.net/pdf?id=XrMWUuEevr 
○ Github: https://github.com/ml-jku/MHNfs 
○ HuggingFace App: https://huggingface.co/spaces/ml-jku/mhnfs 

● LAM-Slide: highly efficient and accurate molecular dynamics
○ Paper (pre-print): https://arxiv.org/abs/2502.12128 
○ Blog: https://ml-jku.github.io/LaM-SLidE/ 

Resources (Bio)

https://openreview.net/forum?id=IjbXZdugdj
https://arxiv.org/abs/2404.07194
https://github.com/ml-jku/vnegnn
https://huggingface.co/spaces/ml-jku/vnegnn
https://www.nature.com/articles/s41467-023-42328-w
https://github.com/ml-jku/cloome
https://huggingface.co/spaces/anasanchezf/cloome
https://arxiv.org/abs/2403.04747
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.aggr.VariancePreservingAggregation.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.aggr.VariancePreservingAggregation.html
https://arxiv.org/abs/2303.03363
https://github.com/ml-jku/clamp
https://openreview.net/pdf?id=XrMWUuEevr
https://github.com/ml-jku/MHNfs
https://huggingface.co/spaces/ml-jku/mhnfs
https://arxiv.org/abs/2502.12128
https://ml-jku.github.io/LaM-SLidE/


In-context learning for 
bioactivity

Schimunek, J., Seidl, P., Friedrich, L., Kuhn, D., Rippmann, F., Hochreiter, S., & Klambauer, G. (2023). Context-enriched molecule representations 
improve few-shot drug discovery. International Conference on Learning Representations. https://huggingface.co/spaces/ml-jku/mhnfs 

https://huggingface.co/spaces/ml-jku/mhnfs


Conclusion



Conclusion
● Domain-Specific Adaptations: Introduced xLSTM variants tailored to NLP, 

computer vision, and major biological domains—DNA-xLSTM, Prot-xLSTM, and 
Chem-xLSTM

● State-of-the-Art Performance: Demonstrated that xLSTM consistently matches or 
surpasses strong baselines across all three domains.

● Scalability & Efficiency: Validated xLSTM's ability to process sequences up to 
260,000 tokens while maintaining superior training speed and inference efficiency 
compared to Transformers.

● Foundation Model Potential: Positioned xLSTM as a leading candidate for 
foundational models in biology, bridging performance, scalability, and domain 
adaptability.

90
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xLSTM Scaling

xLSTM, Beck et.al. 2024

https://arxiv.org/abs/2405.04517


xLSTM Background

+ Enhanced State Tracking + Parallel & Recurrent Mode

Gated Linear Attention Transformers with Hardware-Efficient Training
Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Linear Transformers Are Secretly Fast Weight Programmers
96

https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2102.11174


NXAI
● Company that sponsored the development of xLSTM
● NXAI scales up xLSTM and builds larger LLMs
● “AI at scale”, AI for simulations
● Austrian startup with center in Linz: 
● https://www.nx-ai.com/ 

https://www.nx-ai.com/


AlphaFold

AI breakthrough in biology
98



Future Directions
Scaling: train larger versions of Bio-xLSTM and evaluate scaling. 
Multi-Modality: Incorporate diverse data types, including 3D 
structures and other non-sequential modalities.
Interpretability: Identify  factors contributing to superior 
performance compared to Transformers and Mamba in specific 
contexts. Analyze scenarios where xLSTM underperforms.

99



xLSTM stabilization

Numerical stability of the exponential function
Can be seen as running-softmax

100



LSTM limitations

● Nearest Neighbor Search:
○ given a reference vector
○ scan a sequence sequentially
○ for the most similar vector
○ return its attached value at 

sequence end
● Difficult for models:

○ whenever new most similar 
→ revise value and largest 
similarity

101



LSTM limitations

● Inability to revise storage 
decisions
○ Nearest Neighbor Search

● Limited storage capacities
○ Rare Token Prediction

○ problem with new or rare tokens

● No parallelization for training

102



LSTM limitations

● Rare Token Prediction:
○ perplexity (PPL) of token 

prediction on Wikitext 103
○ partitions of token according 

to frequency
● rare tokens must be memorized 

since they are not learned

103



Post Up-Projection 
Block

● Typically used for sLSTM

● Known from Transformer

● Memory mixing

● Block-diagonal: multiple heads

104



Pre 
Up-Projection 

Block
● Typically used for mLSTM
● Known from State Space Models
● High memory capacity through 

pre up-projection
● External output gate
● Convolution for queries and keys
● Swish activations
● Learnable skip connections

105



xLSTM: state tracking

Formal
Languages

e.g. majority 
count

some
tasks
require
state
tracking

106



xLSTM: memory

Multi-Query Associative Recall task:
● For each sequence, key-value pairs are randomly chosen from a large vocabulary
● must be memorized for later retrieval.

107



Method comparison: language 
modeling

Comparison at language 
modeling
● SlimPajama dataset 

with 15B tokens
● perplexity (ppl) as 

metric

108



xLSTM Limitations

● Memory mixing of the sLSTM prohibits parallelization
Fast sLSTM CUDA kernel is 1.5 times slower than parallel mLSTM.

● CUDA kernels for mLSTM are not optimized (4 times slower than 
FlashAttention or Mamba’s Scan). FlashAttention analog is possible

● Matrix memory of mLSTM is computationally expensive. Parallelization
leads to only a minor overhead concerning the wall clock time

● Initialization of the forget gates must be chosen carefully
● Limited memory (dxd), but no problems for contexts up to 16k
● Neither architecture nor the hyperparameters are optimized

109



● Currently large language models 
(LLMs) dominate the AI landscape

○ Based on Transformer’s 
self-attention

■ Quadratic in sequence 
length (aka 
“context-size”)

○ Prior to 2017: LSTM networks
■ ELMO: first large 

language model
■ Linear in sequence 

length

Improved efficiency through xLSTM: 
RNNs versus Transformer



● Currently large language models 
(LLMs) dominate the AI landscape

○ Based on Transformer’s 
self-attention

■ Quadratic in sequence 
length (aka 
“context-size”)

○ Prior to 2017: LSTM networks
■ ELMO: first large 

language model
■ Linear in sequence 

length

Improved efficiency through xLSTM: 
RNNs versus Transformer

RNN



Abilities and limitations of AI
Moravec’s Paradoxon

● Image recognition, object 
recognition

● Image generation

● Language models
○ Writing texts
○ Semantic similarity 

● Board games and 
computer-game-like tasks

● Control tasks 

● Mathematical tasks, calculations

● Planning and reasoning

● Motoric tasks
○ setting the table

● Understanding of the physical 
world



Incorporating world knowledge via 
Geometric Deep Learning

E(3)-equivariance built into deep 
learning architecture

Virtual nodes for improved learning

Sestak, F., Schneckenreiter, L., Brandstetter, J., Hochreiter, S., Mayr, A., & Klambauer, G. (2024). VN-EGNN: E (3)-Equivariant Graph Neural 
Networks with Virtual Nodes Enhance Protein Binding Site Identification. arXiv preprint arXiv:2404.07194.



Improving robustness through 
contrastive learning

Fürst, A., Rumetshofer, E., Lehner, J., Tran, V. T., Tang, F., Ramsauer, H., ... & 
Hochreiter, S. (2022). Cloob: Modern hopfield networks with infoloob outperform clip. 
Advances in neural information processing systems, 35, 20450-20468.

Sanchez-Fernandez, A., Rumetshofer, E., Hochreiter, S., & 
Klambauer, G. (2023). CLOOME: contrastive learning unlocks 
bioimaging databases for queries with chemical structures. Nature 
Communications, 14(1), 7339.



Improving robustness through 
contrastive learning

Sanchez-Fernandez, A., Rumetshofer, E., Hochreiter, S., & Klambauer, G. (2023). CLOOME: contrastive learning unlocks bioimaging 
databases for queries with chemical structures. Nature Communications, 14(1), 7339.

GIF by Christina Humer
https://ginihumer.github.io/Amumo/   

https://ginihumer.github.io/Amumo/


Improving robustness through 
contrastive learning

Seidl, P., Vall, A., Hochreiter, S., & Klambauer, G. (2023, July). Enhancing activity prediction models in drug discovery with the ability to understand 
human language. In International Conference on Machine Learning (pp. 30458-30490). PMLR.



Improving adaptability through new 
few-shot learning approaches

Schimunek, J., Seidl, P., Friedrich, L., Kuhn, D., Rippmann, F., Hochreiter, S., & Klambauer, G. (2023). Context-enriched molecule 
representations improve few-shot drug discovery. International Conference on Learning Representations.



Drug Discovery
● Selection, generation and 

prediction of drug candidates
● Data sets: 

○ >100,000,000 bioactivity 
triplets

● Methods:
○ Multi-task neural networks
○ Graph neural networks
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